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Abstract The landscape of science education is being

transformed by the new Framework for Science Education

(National Research Council, A framework for K-12 science

education: practices, crosscutting concepts, and core ideas.

The National Academies Press, Washington, DC, 2012),

which emphasizes the centrality of scientific practices—

such as explanation, argumentation, and communication—in

science teaching, learning, and assessment. A major chal-

lenge facing the field of science education is developing

assessment tools that are capable of validly and efficiently

evaluating these practices. Our study examined the efficacy

of a free, open-source machine-learning tool for evaluating

the quality of students’ written explanations of the causes

of evolutionary change relative to three other approaches:

(1) human-scored written explanations, (2) a multiple-

choice test, and (3) clinical oral interviews. A large sample

of undergraduates (n = 104) exposed to varying amounts

of evolution content completed all three assessments: a

clinical oral interview, a written open-response assessment,

and a multiple-choice test. Rasch analysis was used to

compute linear person measures and linear item measures

on a single logit scale. We found that the multiple-choice

test displayed poor person and item fit (mean square outfit

[1.3), while both oral interview measures and computer-

generated written response measures exhibited acceptable

fit (average mean square outfit for interview: person 0.97,

item 0.97; computer: person 1.03, item 1.06). Multiple-

choice test measures were more weakly associated with

interview measures (r = 0.35) than the computer-scored

explanation measures (r = 0.63). Overall, Rasch analysis

indicated that computer-scored written explanation mea-

sures (1) have the strongest correspondence to oral inter-

view measures; (2) are capable of capturing students’

normative scientific and naive ideas as accurately as

human-scored explanations, and (3) more validly detect

understanding than the multiple-choice assessment. These

findings demonstrate the great potential of machine-learn-

ing tools for assessing key scientific practices highlighted

in the new Framework for Science Education.

Keywords Applications in subject areas � Evaluation

methodologies � Improving classroom teaching �
Pedagogical issues � Teaching/learning strategies

Introduction

Science and engineering continue to play key roles in

addressing social, economic, and political challenges fac-

ing the world (American Association for the Advancement

of Science (AAAS) 2011). For this reason, quality science

and engineering education remain high-priority goals, not

only for the purpose of maintaining a high-skilled work-

force, but also for fostering the development of a

E. P. Beggrow (&) � M. Ha

Department of Teaching and Learning, The Ohio State

University, 333 Arps Hall, 1945 N High Street, Columbus,

OH 43210, USA

e-mail: beggrow.7@osu.edu

R. H. Nehm

Center for Science and Mathematics Education, Department

of Ecology and Evolution, Stony Brook University, Stony Brook,

NY 11794, USA

D. Pearl

Department of Statistics, The Ohio State University, 404

Cockins Hall, 1958 Neil Avenue, Columbus, OH 43210, USA

W. J. Boone

Department of Educational Psychology, Miami University,

501 East High Street, Oxford, OH 45056, USA

123

J Sci Educ Technol (2014) 23:160–182

DOI 10.1007/s10956-013-9461-9



scientifically literate citizenry that can engage in effective

decision making about complex issues like global warm-

ing, energy security, disease prevention, and genetically

modified organisms (National Research Council (NRC)

2012). In response to demands for a more scientifically

literate citizenry and workforce, the landscape of science

education is being transformed in the United States; sci-

ence standards and instruction are continuing to move

away from the presentation of science as a collection of

facts to be memorized, and toward an inquiry-based

framework that emphasizes the integration of practices

(e.g., explanation, argumentation, and communication),

crosscutting concepts (e.g., patterns, cause and effect, and

system models), and core ideas (e.g., energy and evolution)

into science teaching, learning, and assessment (National

Research Council 2012).

Integrating practice-based skills into inquiry teaching is

expected to help students learn how scientific understanding

is generated, in contrast to lecture-based instruction that

emphasizes the memorization of the outputs of the scientific

enterprise (American Association for the Advancement of

Science 2011), that is, students are expected to participate in

authentic scientific practices by doing science. But

embarking on this large-scale reform project will require a

radical departure from everyday assessments dominated by

multiple-choice and true–false formats. Indeed, developing

and evaluating scientific arguments and explanations, and

communicating such understanding to others, cannot be

meaningfully assessed using forced-choice tests. A major

challenge facing the field of science education is building

assessment tools and systems that are capable of validly and

efficiently evaluating authentic scientific practices (National

Research Council 2001b, 2012).

The practice of explanation brings its own unique chal-

lenge to the task of assessment. Much of that challenge lies in

the fact that several different perspectives have emerged on

the practice of explanation, particularly about how to define

an explanation and how to assess an explanation (e.g., Ber-

land and McNeill 2012; Braaten and Windschitl 2011;

Osborne and Patterson 2011; Russ et al. 2008; Songer and

Gotwals 2012). Four of the more salient perspectives that

have been proposed in the literature include defining expla-

nations: (1) as mechanistic statements (Russ et al. 2008); (2)

as components of argumentation (Berland and McNeill

2012); (3) as integrated packages consisting of scientific

claims, evidence, and reasoning (Songer et al. 2009); and (4)

as a means of making further sense of an agreed-upon fact or

phenomenon (Osborne and Patterson 2011). Clearly, very

different conceptualizations of the practice of explanation

exist in the field of science education.

Despite the lack of consensus in the literature on the

definition of a scientific explanation, researchers have

found a variety of ways to introduce this practice to

students at different age levels. For instance, Songer and

Gotwals (2012) emphasized the importance of integrating

inquiry with content and have explored how to scaffold the

practice of explanation along with biology content learning

(with both activities embedded within learning progres-

sions). Their research focused on scaffolding elementary

and middle school students’ evidence-based explanation-

building skills. Developing students’ competencies in sci-

entific practices is particularly challenging because

younger students often lack science content knowledge and

an understanding of the practice itself (McNeill et al.

2006).

Research has begun exploring the utility of computer-

based learning environments for both developing and

evaluating students’ proficiency in constructing scientific

explanations (e.g., Gobert et al. 2012; Woloshyn and

Gallagher 2009). Specifically, Gobert and colleagues’ work

(both with the Calipers Project and Science Assistments)

has created an intelligent tutoring system with the purpose

of scaffolding the development of scientific process skills

in middle school students. Along with assisting students

with hypothesis generating and collecting and interpreting

data, the intelligent tutoring system, Science Assistments,

provides students with the opportunity to construct an

explanation of a simulated experiment (Gobert et al. 2012).

Yet, the authors acknowledge that the explanations were

not autoscored, nor were larger conceptual issues like

theory and content knowledge included; both the former

and the latter were considered ‘‘beyond the scope of the

project’’ (Gobert et al. 2012, p. 163). In addition to scaf-

folding scientific process skills in general, some research

has specifically addressed how computer-based learning

programs can guide students in self-explanation (see

Woloshyn and Gallagher 2009 for a brief review), a skill

that has been found to be useful in fostering learning in

students (e.g., Chi et al. 1989; Lombrozo 2006, 2012). This

work in computer-based learning is promising and has

much to offer to the larger body of research in developing

and assessing students’ explanation skills.

Our study differs from prior work (e.g., Songer, McNeil,

and Gobert and colleagues) in several respects. First, our

study focuses on the assessment of students’ content

knowledge and scientific reasoning expressed in written

explanations. Second, it does not explore how well students

have mastered the practice of explanation itself (e.g.,

whether students express integrated packages of scientific

claims, evidence, and reasoning). Third, our study does not

examine the impact of having students engage in the

practice of explanation on content learning (Chi et al. 1989;

Lombrozo 2012). Fourth, it attempts to bring computer

tools to bear on the 30-year history of using a particular

type of written explanation to assess evolutionary under-

standing (e.g., Deadman and Kelly 1978). Given the long
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history of using written explanations in evolution assess-

ment, we focus on this topic in detail.

Assessment of Core Ideas in Science: Evolution

Biological evolution is a topic with direct relevance to

many current societal challenges emphasized by the

National Research Council (2007): the evolution of anti-

biotic resistance (e.g., MRSA); the origins of new patho-

gens (e.g., new strains of Swine flu); the preservation of

endangered species (e.g., Florida panther); and the devel-

opment of genetically engineered crops, to name a few.

Despite the NRC’s (2012) recognition of evolution as one

of four core ideas in science education (National Research

Council 2012), a large body of work has shown that it is a

particularly difficult subject for students to learn (Nehm

and Reilly 2007). For this reason, evolution assessments

are of considerable importance, not only for documenting

student learning difficulties, but also for evaluating the

comparative efficacy of alternative instructional approa-

ches (e.g., Nehm and Reilly 2007).

Long before the current emphasis on the importance of

scientific practices in teaching and learning, many science

education research studies recognized the utility of written

explanation tasks for gaining insights into students’ mental

models and reasoning about evolution and natural selection

(e.g., Deadman and Kelly 1978; Bishop and Anderson

1990). Asking students to construct explanations enables

researchers and teachers to glean important insights about

the structure and composition of student thought, that is,

the open-ended format permits many permutations of

‘‘right’’ and ‘‘wrong’’ knowledge elements, rather than

either ‘‘right’’ or ‘‘wrong’’ multiple-choice formats (Nehm

and Haertig 2012). Despite the long-standing interest in

written explanation tasks in evolution education assess-

ment, and the recent emphasis on practices such as

explanation in science instruction, the usefulness of written

response assessments is limited because of the time

required for administering and scoring the tests [as com-

pared to multiple-choice (MC) formats] (for a review, see

Ha et al. 2011; Haudek et al. 2011; Nehm and Schonfeld

2008; Nehm et al. 2012b).

Although some inferences derived from commonly used

MC instruments (e.g., the Conceptual Inventory of Natural

Selection (CINS): Anderson et al. 2002) have been shown

to be valid and reliable (Nehm and Schonfeld 2008), they

are not without limitations. MC assessment items—

because they typically contain numerous enticing naive

idea distracters—may actually cause students to develop

false knowledge (Roediger and Marsh 2005). Furthermore,

MC items typically contain either normative, scientifically

accurate answer options, such as key concepts (KCs) of

natural selection (e.g., variation, heritability, and

competition), or non-normative naive ideas (NIs) (e.g.,

needs cause evolutionary change). Yet, several empirical

studies have shown that normative and non-normative

ideas typically coexist in large percentages of students’

mental models of evolution (Beggrow and Nehm 2012;

Nehm and Schonfeld 2008). Simply put, many MC formats

do not accurately reflect the structure of student thinking

about the core idea of evolution (Opfer et al. 2012). While

ordered MC (OMC) instruments can be developed to detect

students’ synthetic or mixed models (Briggs et al. 2006;

Nehm and Ha 2011; Vosniadou et al. 2008), no such

instruments have been developed for the topic of evolution

(Opfer et al. 2012). More fundamentally, MC assessments

simply cannot assess students’ communication and expla-

nation abilities.

Another widely used format for uncovering the structure

of student thinking about core ideas is the clinical oral

interview (Ginsburg 1981). Clinical oral interviews provide

opportunities for educational researchers to gather student

explanations in a way that is similar to the gathering of

written responses and has been found to be as valid (Sed-

don and Pedrosa 1988), but with the advantage of possible

clarification, follow-ups, and divergent conversational

paths (Black 1999; Joughin 1998). In other words, because

interviewers are in dialogue with participants, they can ask

follow-up questions to clarify any points of ambiguity or

confusion, or to determine whether or not students are

using words or terms (such as the KCs of evolution) in a

scientifically accurate way (Rector et al. 2013; Russ et al.

2012). This context provides interviewers with opportuni-

ties for gaining deeper and more valid insights into stu-

dents’ thinking processes and resolving instances of lexical

ambiguity. With written assessments, in which there is no

interaction between the student and the examiner, these

opportunities for clarification and determining accurate use

of terms are absent. Instead, the response must be inter-

preted ‘‘as-is’’ and evaluation relies upon the examiner’s

interpretation of meanings and intentions. For these rea-

sons, the clinical interview is often considered to be a

‘‘gold standard’’ for assessing student reasoning and

understanding within education research (Ginsburg 1981).

Nonetheless, this format is far from ideal with large sam-

ples, as it is even more time-intensive than administering

and scoring constructed-response assessments.

Recent research has shown that in the domain of evo-

lution, written response scores and clinical oral interview

scores tend to be strongly correlated (Nehm and Schonfeld

2008; Nehm et al. 2012a). Both of these assessment for-

mats—interviews and written explanations—ask partici-

pants to recall information. In contrast, MC assessments

ask students to recognize information and therefore may

have weaker correspondence with clinical interviews rela-

tive to written explanation assessments (Nehm and
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Schonfeld 2008; Opfer et al. 2012). In alignment with the

NRC (2001b) goals of assessment design, assessments

should prioritize recall tasks over recognition tasks, as

information recall is a more robust indicator of meaningful

learning (Opfer et al. 2012). This is where the CINS (and

perhaps other MC instruments) fall short, as they rely on

recognition over recall, and have unsurprisingly been found

to have weaker associations with clinical oral interviews

relative to recall task scores (Nehm and Schonfeld 2008;

Nehm et al. 2012a). A written response assessment format

thus has several advantages over MC assessments, despite

its associated costs.

Automated Computer Scoring

Given the constraints of administering and scoring written

assessments, recent work has turned to computer-scoring

software as a possible solution (Graesser and McNamara

2012; Haudek et al. 2011; Moscarella et al. 2008; Page

1966; Shermis and Burstein 2003; Yang et al. 2002). In

particular, the research on the efficacy of computer-assisted

scoring has been extended from assessing writing skills

(e.g., E-Rater) to assessing specific content such as math

and science (e.g., C-rater, see Leacock and Chodorow

2003). Recent studies have also explored the role of

computer-assisted scoring (CAS)—particularly machine

learning—in biology education research (Ha et al. 2011;

Haudek et al. 2011; Nehm et al. 2012b). Both C-rater and

the CAS used in this study use automated computer-scoring

systems to detect the presence or absence of the content

knowledge in the written responses developed by natural

language processing techniques (Leacock and Chodorow

2003). However, the major difference between these two

CAS systems is that the CAS used in the present study is

able to detect normative scientific ideas and non-normative

naı̈ve ideas (see the ‘‘right and wrong knowledge ele-

ments’’ section above in the ‘‘Assessment of core ideas in

science: evolution’’ section). Consequently, our CAS sys-

tem (like C-rater) is capable of reporting not only the

richness or poorness of scientific ideas in written responses

(e.g., total key concept score), but it can also detect four

different reasoning patterns about evolution (e.g., scien-

tific, mixed, naı̈ve, and no models).

While computer-scoring models for written responses of

evolutionary phenomena (and many other topics) have

been found to be comparable to human scoring of written

responses (Graesser and McNamara 2012; Ha et al. 2011),

it remains to be determined how closely computer-gener-

ated scores of written responses compare to the ‘‘gold

standard’’ of clinical oral interviews. The comparison of

computer-scored responses to clinical interviews is cru-

cially important, yet is lacking in prior studies of the effi-

cacy of computer-scoring methods.

A second major limitation of previous studies investi-

gating the correspondence of assessment methods has been

the exclusive use of classical test theory (CTT) analyses

(e.g., Nehm and Schonfeld 2008; Nehm et al. 2012a). CTT

relies on many psychometric assumptions that may not

always be met. For example, CTT assumes a normal dis-

tribution and scale consistency, although it uses raw scores,

which can have greatly limiting consequences when the

data are ordinal/categorical in nature, as differences

between scores may not always be equivalent, as is typi-

cally assumed (Neumann et al. 2011). In other words, CTT

uses raw scores even though on an instrument, the differ-

ence in meaning between a score of 85 and a score of 90,

for example, is not necessarily equivalent to the difference

in meaning between a score of 90 and of 95. The

assumption of scale consistency is rarely met, and thus,

CTT analyses tend to be less sound than other approaches,

such as Rasch analysis (Boone and Scantlebury 2006).

The Rasch model transforms raw data into measures on

a standardized equal interval scale (Boone and Scantlebury

2006). In addition to addressing the issue of equivalent

scaling, Rasch analysis is also able to provide very rigorous

assessment of reliability and validity through indices such

as mean square (MNSQ) and standardized z-score (ZSTD)

(see Neumann et al. 2011 for details) in order to judge the

quality of items, which CTT is not able to provide.

Researchers use the mean of fit indices for individual items

generated by Rasch analysis and the number of misfit items

to judge the quality of the entire instrument. Moreover, fit

indices for individual persons can also be used to evaluate

participant performance.

Despite the widely accepted advantages of Rasch anal-

ysis over CTT analyses, previous studies were not able to

employ this more rigorous psychometric approach because

of the small clinical oral interview sample sizes (e.g.,

n = 18; Nehm and Schonfeld 2008). Another limitation of

Nehm and Schonfeld’s (2008) study was that it used a

written assessment that (unlike the Assessment of Con-

textual Reasoning About Natural Selection test

[ACORNS], see Methods) neither controlled for order

effects (Rector et al. 2012) nor included items standardized

by familiarity (Nehm and Ha 2011). In order to improve

upon previous approaches, and to more rigorously examine

the correspondence among assessment measures, we used

Rasch analysis to compare computer-scored measures of

ACORNS explanation tasks to MC assessment measures

and clinical oral interview explanation tasks (Boone and

Scantlebury 2006). Because Rasch analysis is robust with

large sample sizes (e.g., [100), we carefully interviewed

more than 100 students in order to use Rasch analysis to

test the fidelity of computer-scored written explanations

relative to these other metrics. We know of no other study

that has amassed such a large corpus of data from clinical
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interviews to perform an evaluation of the quality of

computer-scoring methods.

Research Questions

The central goal of this study was to examine the degree to

which computer-scored explanations aligned with clinical

oral interview scores. In pursuing this goal, we explored a

series of related questions: (1) How well do measures

derived from the MC CINS test, the computer-scored and

human-scored ACORNS test, and the clinical interviews fit

a Rasch model? (2) Using Rasch, to what extent do mea-

sures of explanation quality align across the assessment

formats? and (3) How do the different assessment formats

compare in terms of the insights they provide into students’

conceptual frameworks about the core idea of evolution?

Methods

Sample

We gathered data from 104 undergraduate students enrol-

led at a large, public, Midwestern research university in the

United States. Participants from four classes took part in

our study: introductory biological anthropology (n = 26),

introductory biology for majors (n = 28), advanced evo-

lutionary biology (n = 23), and advanced mammalogy

requiring a prior course in evolution (n = 27). The average

age of participants was 20.9 years, 40.4 % were male, and

the majority was white non-Hispanic. All 104 participants

voluntarily took part in individual clinical oral interviews

and were offered USD $20 for their participation. Details

about the interviews and instruments are discussed below.

Instruments and Scoring Methods Overview

We used three approaches to gather information about

participants’ evolutionary reasoning patterns: (1) the mul-

tiple-choice Conceptual Inventory of Natural Selection

(CINS) test (Anderson et al. 2002), (2) the open-response

ACORNS instrument (Nehm et al. 2012a), and (3) clinical

oral interviews (modeled after Nehm and Schonfeld 2008).

All of these tools have been used previously in the litera-

ture (Anderson et al. 2002; Bishop and Anderson 1990;

Nehm and Schonfeld 2008; Nehm et al. 2012a, b). We

discuss the details of each approach in turn.

The CINS Test

The CINS is a multiple-choice distracter-driven test that

has been shown to generate valid inferences about overall

levels of students’ evolutionary knowledge (specifically

natural selection and speciation) (Nehm and Schonfeld

2008). Nevertheless, despite being widely used, the test has

been shown to display psychometric problems at finer grain

sizes (Battisti et al. 2010). The CINS consists of twenty

items that are scored as correct/incorrect; thus, the total

score of the instrument ranges from 0 to 20. While the

CINS only allows for a student to choose a ‘‘right’’ (nor-

mative scientific idea) or a ‘‘wrong’’ (naive idea) answer

option, other tests (e.g., see ACORNS below) allow par-

ticipants to express both types of reasoning in an expla-

nation. This constraint makes comparisons of concept-level

scores from the CINS and other MC tests challenging. For

example, when asked about the scientific accuracy of an

evolutionary idea, if a student chooses a naive idea answer

(but not a key concept answer), does this response indicate

that the student (1) does not know the key concept, (2)

prefers the naive idea but knows the key concept, or (3)

prefers the naive idea but does not know the key concept?

Given this complication, for our study, we followed the

intentions of the CINS authors when interpreting the

meaning of student responses, that is, if a student did not

choose the ‘‘correct’’ (scientific) answer, they are consid-

ered to not know the scientific idea. While this assumption

may not always be correct, it is in line with the design of

this test.

A second complication arose in attempting to compare

CINS scores with the other instruments. In order to stan-

dardize our comparisons among assessment methods (that

is, only compare concepts that were assessed in all of the

different tools), we necessarily had to omit some of the

CINS items that assessed concepts that are almost never

used by students to explain evolution (e.g., ‘‘biotic poten-

tial’’ and ‘‘population stability’’) or are typically part of

larger concepts (e.g., ‘‘causes of variation’’ is part of the

‘‘variation’’ concept) (Table 1). However, we used the

majority of CINS items (shown as the item number from

the original published instrument, in parentheses) that

corresponded to the following key concepts across instru-

ments: variation (6, 9, 16, 19), heritability (7, 17), com-

petition (5, 15), limited resources (2, 14), and differential

survival (10, 18; see Table 1 for a summary).

The ACORNS Test

New findings about how students think about evolution,

such as the impact of biotic familiarity, plants versus ani-

mals, and gain versus loss, have called for more sophisti-

cated assessments of student thinking about evolution

(Nehm and Ha 2011; Opfer et al. 2012). The newly

developed constructed-response ACORNS (Assessment of

Contextual Reasoning About Natural Selection; Nehm

et al. 2012a) addresses these concerns and allows students
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to simultaneously incorporate a variety of NIs and KCs into

their written explanations of evolutionary change across a

variety of surface features known to impact reasoning

processes (e.g., taxon/trait, loss/gain; Nehm and Ha 2011;

Opfer et al. 2012).

The ACORNS has been shown to generate valid and

reliable inferences about student reasoning about natural

selection in different contexts (e.g., trait gain and loss in

plants and animals; Beggrow and Nehm 2012; Nehm et al.

2012a; Opfer et al. 2012). The ACORNS prompts students

to generate written explanations of evolutionary change.

Though different philosophical perspectives on explanation

exist in the literature (see Braaten and Windschitl 2011),

our items ask students to demonstrate their understanding

of the evolutionary process by describing how the ex-

planandum—or phenomenon to be explained (in our case,

the gain or loss of a trait)—came to be (Osborne and

Patterson 2011). Thus, our task aims to elicit a theoretical

explanation, unlike much of the other work that asks stu-

dents to provide evidence to back up their claims (e.g.,

Berland and McNeill 2012; Sandoval and Millwood 2005;

Songer et al. 2009). The prompts in the aforementioned

studies often provide varying types of evidence (embedded

within the item itself). In contrast, our items do not provide

any evidence for students to include in their explanations.

Our study also uses explanations as a tool for under-

standing student reasoning about content, not understand-

ing student reasoning using evidence (e.g., Songer et al.

2009; Songer and Gotwals 2012), that is, we are not

focused on student learning of the practice itself (as are

Berland and McNeill 2012 and Songer and Gotwals 2012).

In our study, the explanation prompts consisted of four

isomorphic items, carefully standardized by taxon and trait

familiarity: How would biologists explain how a living X

species with/without Y evolved from an ancestral X spe-

cies that had/lacked Y? (X = Mouse/lily/snail/grape;

Y = claws/petals/teeth/tendrils). The ACORNS responses

were scored using the published rubrics of Nehm et al.

(2010) for six KCs and three NIs of natural selection (KCs:

variation, heritability, competition, limited resources, dif-

ferential survival, and non-adaptive ideas; NIs: needs/

goals, use/disuse, and adapt/acclimation). KC scores for

each item ranged from 0 to 6 (0, 1, 2, 3, 4, 5, 6), and NI

scores for each item ranged from 0 to 3 (0, 1, 2, 3). Par-

ticipant responses were scored to consensus by two human

raters (a PhD student in biology education and an evolu-

tionary biologist) who demonstrated strong inter-rater

agreement (j[ 0.80).

Computer-Assisted Scoring of the ACORNS

An automated computer-scoring model (ACSM) also

scored students’ written explanations produced in response

to the ACORNS items. The ACSM used in our study was

developed using machine-learning methodologies.

Machine learning is a field of computer science that

investigates how computers can be used to detect, analyze,

and build models of patterns in data that humans have

categorized and apply these models to new, uncategorized

datasets (for details, see Abu-Mostafa 2012; Nehm et al.

2012b). In a general sense, the machine-learning software

‘‘learns’’ from human-scoring patterns and attempts to

build models that are able to predict these patterns. In our

study, we used the software package LightSIDE (see

Mayfield and Rosé 2013), which is a free, open-source

machine-learning software package, to build nine ACSMs

for nine different evolutionary ideas (six scientific and

three naive). The ACSMs were built using corpora of

human-scored responses independent of the dataset used in

our current study, that is, the response corpora used to build

the ACSMs were different from the response corpora used

to score the student responses in our current study.

Two aspects of machine learning are important to dis-

tinguish. The machine-learning software first extracts all of

the features from students’ explanations (e.g., single words

or two-word combinations) and builds an optimal regres-

sion equation that predicts human graders’ decision pat-

terns (i.e., whether the concept was present or absent in a

particular response). This step is informally known as

training (Abu-Mostafa 2012). When the computer builds

an optimal equation, it is important to check the validity of

Table 1 Concepts scored in the clinical interviews, the ACORNS

explanation tasks, and the MC CINS assessment

Concepts scored in

explanations (see Opfer et al.

for details and rubrics)

Interview ACORNS

(human and

computer)

CINS

Core concept

Variation Yes Yes Yes

Heredity Yes Yes Yes

Differential survival Yes Yes Yes

Key concept

Competition Yes Yes Yes

Limited resources Yes Yes Yes

Non-adaptive reasoning Yes Yes No

Naive idea

Needs/goals Yes Yes No

Use/disuse Yes Yes No

Adapt/acclimation Yes Yes No

Note that because in the CINS students can only choose a correct

concept OR a naive idea, it is only possible to determine whether they

know the correct concept. If students chose a naive idea, that does not

mean that they do not know correct concept, only that they prefer the

naive idea in the context of the particular item. See Nehm and

Schonfeld (2008), Nehm et al. (2010), and Opfer et al. (2012) for

details of many student responses and exact human-scoring protocols
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the equation (that is, does it really work?), which is

accomplished by comparing the model performance on a

subset of the human-scored dataset to a novel corpus of

scored responses. This second step is informally known as

testing. If good results emerge from both training and

testing, then the ACSM can be used to predict scores for a

novel response corpus. But in order to know whether the

model performed well on the new corpus, humans also

need to independently score this set of responses. In our

study, we report training values as well as testing values for

the ACSMs for nine different concepts.

Many different types of machine-learning parameters

can be controlled using LightSide. These parameters

include N-Gram selection (i.e., the number of contiguous

feature sequences, such as unigrams or bigrams—such as

‘‘genetic,’’ ‘‘change’’ for unigram, ‘‘genetic_change’’ for

bigram), stemming (i.e., grouping words based on common

stems—such as ‘‘adapt’’ for adapting and adaptation), and

removing stop words (i.e., very common words such as

‘‘a,’’ ‘‘an,’’ ‘‘so,’’ or ‘‘and’’). Based on prior research (Ha

and Nehm 2012; Ha et al. 2011; Nehm et al. 2012b), for

each ACSM, we used different settings for different con-

cepts: unigram for variation, competition, limited sources,

non-adaptive, and use/disuse concepts, and bigram for

heredity, differential survival, needs/goals, and adapt/

acclimation. In LightSIDE, for feature extraction, we

selected ‘‘stemming,’’ ‘‘removing stop words,’’ ‘‘line

length,’’ ‘‘treat above features as binary,’’ ‘‘contains non-

stop words,’’ and threshold set at the value of 5 (see

Mayfield and Rosé 2012, 2013, for details on the Light-

SIDE program). In addition, the scoring models were

trained using tenfold validation. In LightSIDE, we used

sequential minimal optimization (SMO) for training sup-

port vector (see Platt 1999 for details). Although it takes

several minutes to prepare the datasets and select the par-

ticular settings for each concept, it typically takes fewer

than 5 s for LightSIDE to build and apply the ACSMs to

our corpus.

Our ACSMs for the nine natural selection concepts were

built using a corpus of 6,232 written explanations. These

explanations were written by (1) non-majors enrolled in an

introductory biology class (274 students/1,096 written

explanations), (2) STEM-related majors enrolled in an

introductory biology (403 students/1,612 written explana-

tions), (3) biology-related majors enrolled in an introduc-

tory biology class focusing on evolution (565 students/

2,260 written explanations), (4) biology majors enrolled in

an advanced evolution class (123 students/492 written

explanations), and (5) experts in evolutionary biology

(graduate students and professors) (193 experts/772 written

explanations). The corpus of written explanations was

produced in response to various ACORNS instrument

taxon/trait combinations, such as: (1) snail-poison, (2)

prosimian-tarsi, (3) elm-winged seed, (4) labiatae-pule-

gone, (5) penguin-flightless, and (6) rose-thornless. It is

important to emphasize that the items for the student

explanations that we used to train or build the ACSMs

were different from the items in the current study.

Clinical Oral Interviews and Scoring

The clinical oral interview protocol was modified from the

protocol of Nehm and Schonfeld (2008) and consisted of

two ACORNS items, which were identical to those on the

written instrument, and two novel items (to minimize any

potential testing effects). All items were isomorphic and

used taxa and traits that were standardized by familiarity

(see Nehm et al. 2012a). The novel items were as follows:

(a) ‘‘How would biologists explain how a living opossum

species without a tail evolved from an ancestral opossum

species that had a tail?’’ and (b) ‘‘How would biologists

explain how a living cactus species with spines evolved

from an ancestral cactus species that lacked spines?’’

During the interviews, participants were asked follow-up

questions to the items that included prompts such as ‘‘Can

you explain what you mean when you use the word X?’’

and ‘‘Can you tell me more about X?’’ These prompts

provided participants with an opportunity to clarify their

responses and the interviewer with an opportunity to

determine whether participants understood the words and

terms they were using and whether they were using them in

an accurate manner. Interviews were scored 0/1 for the

absence/presence of the six KCs and three NIs (KCs:

variation, heritability, competition, limited resources, dif-

ferential survival, and non-adaptive ideas; NIs: need/goal,

use/disuse, and adapt/acclimation) using the published

rubrics of Nehm et al. (2010). KC scores for each item

ranged from 0 to 6 (0, 1, 2, 3, 4, 5, 6), and NI scores for

each item ranged from 0 to 3 (0, 1, 2, 3). Transcripts are

provided (see Clinical Oral Interviews below) to illustrate

the types of responses given by participants and the

methods used to score them. An evolutionary biologist and

a biology education PhD student scored all interviews, and

any scoring discrepancies were subsequently resolved via

deliberation. Consensus scores were used in all subsequent

analyses. All human scoring of written responses and

clinical oral interviews met a cutoff value of inter-rater

reliability of j[ 0.80 (see Ha et al. 2011 for details).

Comparing Student Ideas Across Assessments

Our first analysis calculated the percentages of participants

who used each KC and NI for each item in all of the

datasets (i.e., human-scored ACORNS, computer-scored

ACORNS, clinical oral interviews, and CINS). Average

frequencies of each KC and NI used across the items for
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each assessment were also calculated. This analysis pro-

vides a straightforward summary of the outputs of the

different assessment methods.

Testing Rasch Model Fit

To answer our first research question, for each of the four

datasets (i.e., human-scored ACORNS, computer-scored

ACORNS, interviews, and CINS), we used Rasch analysis

to calculate (1) the means of person and item MNSQ and

ZSTD values, (2) person and item separation, and (3)

person and item reliability in order to evaluate how well

the data fit the Rasch model. Since the CINS assessment

does not have items specifically designed for measuring

particular naive ideas independent of those for capturing

key concepts, two separate Rasch analyses were conducted.

First, we compared the KC person measures of (1) the MC

CINS, (2) the computer-scored ACORNS, (3) the human-

scored ACORNS, and (4) oral interviews. Second, we

compared the KC and NI person measures of (1) the

computer-scored ACORNS, (2) human-scored ACORNS,

and (3) oral interviews. Rasch analyses were conducted

using the WINSTEPS program (Linacre 2006).

Quantifying Alignment with Clinical Oral Interviews

Using Rasch Measures

In order to establish and compare agreement levels

between measures derived from the different instruments

and the ‘‘gold standard’’ oral interview, we performed a

series of analyses. First, we performed regression and

correlation analyses of the person measures generated by

Rasch analysis to explore the extent to which the assess-

ments predicted clinical oral interview measures. Pearson

correlations between the Rasch measures (e.g., both KC

and KC&NI) for the interview, the human-scored and

computer-scored ACORNS, and the CINS were performed.

In the next analysis, we performed a series of linear

regressions of how well the Rasch measures for the dif-

ferent assessments predicted the Rasch measures of the

interview. Pearson correlations and regression analyses

were conducted using SPSS version 19.0.

Quantifying Alignment with Clinical Oral Interviews

Using Ordered Participant Pairs

In addition to using regression to analyze the alignment of

the different assessments with clinical interview scores, we

also developed a more precise comparison method using

ordered participant pairs. The same participant ability

measures derived from Rasch analysis (KC and KC&NI)

were used to examine how each assessment (i.e., the

interview, the human-scored and computer-scored

ACORNS, and the CINS) ordered all possible pairs of

participants (5,356 = 104 9 103/2). Thus, for each

assessment, pairs of students were ordered based on the

person measures derived from Rasch analysis. For exam-

ple, for the interview measures, participant ‘‘A’’ could have

been ordered above, below, or equal to participant ‘‘B.’’

To analyze alignment with the interview, the ordered

participant pairs of each assessment (human-scored and

computer-scored ACORNS, and the CINS) were compared

to the ordered participant pairs of the interview. For

example, consider the pair of participants, participant ‘‘A’’

and participant ‘‘B,’’ for the computer-scored ACORNS

and for the interview. The computer-scored ACORNS and

the interview may agree on how to order this pair of par-

ticipants (e.g., participant ‘‘A’’ is ordered above, below, or

equal to participant ‘‘B’’ for both assessments), in which

case the assessment measures would be in full concordance

(Table 2). If one assessment orders the pair of participants

as equals, but the other assessment orders participant ‘‘A’’

as above or below participant ‘‘B,’’ then the assessment

measures would be in half discordance (Table 2). Finally,

should the computer-scored ACORNS order participant

‘‘A’’ above participant ‘‘B,’’ and the interview order par-

ticipant ‘‘A’’ below participant ‘‘B’’ (or vice versa), the

assessment measures would be in full discordance

(Table 2). For each student, we computed the average

discordance level across pairings with the other 103 stu-

dents for the computer-scored ACORNS measures versus

the interview measures. This analysis was then repeated for

the human-scored ACORNS measures versus the interview

measures and for the CINS measures versus the interview

measures. Overall, this analysis provides a much more

precise comparison of instrument alignment than is possi-

ble with the regression analysis.

Quantifying Overall Evolutionary Reasoning Models

The previous analyses compared the performance of dif-

ferent assessment methods using tallies of concept scores.

In order to gain better insight into participants’ conceptual

frameworks and answer our final research question, we

categorized the responses from the ACORNS (human-

scored and computer-scored) and the interviews into one of

four model types (note that the CINS could not be analyzed

in this way). These reasoning models provide a holistic

snapshot—holistic in the sense of accounting for both KC

and NI use—of the general approach that participants are

using to tackle evolutionary problems (See Nehm et al.

2009, for the use of this approach with science teachers). A

scientific model is defined by the exclusive use of norma-

tive scientific concepts (i.e., KCs) to explain evolutionary

change (no naive ideas are used); a mixed model describes

explanations that are composed of combinations of naive
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ideas and key concepts; a naive model is defined by the

exclusive use of naive, non-normative ideas (and no key

concepts); finally, no model was used to describe cases in

which participants did not use any of the nine concepts that

we scored and simply repeated parts of the question or

answered the prompt using irrelevant text.

Categorizing participants by reasoning models was

performed using two different methods. The first method

identified participants’ model type for each ACORNS item

and then a sample-level percentage was calculated for each

model type per item (e.g., for the snail item, a percentage

of no model, naive, mixed, and scientific models was cal-

culated). The second method identified an overall reason-

ing model for each participant by averaging each

individual participant’s performance across all four items

(e.g., participant ‘‘A’’ had a scientific model and participant

‘‘B’’ had no model). Then, a sample-level percentage was

generated for each model. The purpose of quantifying these

reasoning models was to gain insight into how different

assessment methods reflected broader reasoning models

and levels of expertise (Nehm and Ridgway 2011), and

how closely particular test results aligned with clinical

interview results.

Results

Prior to discussing the comparisons among assessment

types, we first describe the results from each of the

assessments.

Clinical Oral Interviews

The 104 interviews provided rich insights into participants’

explanations of the causes of evolutionary change. The

interviews lasted 13.78 min on average (minimum

6.13 min; maximum 29.4 min). Overall, a greater per-

centage of participants used KCs compared to NIs, and

non-adaptive ideas were the least frequent concepts

employed by participants (Table 3).

In addition to providing information about the compo-

sition of evolutionary explanations, the clinical interviews

also provided an opportunity for participants to engage in

dialogue with the interviewer, provide clarification about

how they reasoned, and to reveal the intended meaning of

the words that they chose to express their ideas (Black

1999). Such clarification is particularly important when

explanations are being scored for the presence/absence of

ideas and for evolutionary explanations in which the issue

of lexical ambiguity commonly arises (Rector et al. 2013).

Here, we provide examples when such clarification epi-

sodes meant the difference between being scored for the

presence versus the absence of a naive idea. For example:

Participant C …so, uh, the tail eventually became

eliminated from the gene pool because it

wasn’t, uh, required, so not having a tail

became an adaptation from a mutation.

Interviewer And when you say adaptation, what do you

mean by that?

Participant C Um. An adaptation is something that

started as a mutation or variation that

was, uh, beneficial enough to the species,

that, uh, eventually became prevalent,

prevalent [sic].

In this example, when Participant C provided an initial

explanation and used the term adaptation, it was not

entirely clear whether she understood the meaning of this

idea. However, upon responding to the follow-up question,

it became apparent that the participant was using adapta-

tion in a scientifically normative manner. This is not

always the case, however, as participants will often use

scientific terms without understanding the scientific

meaning of the term that they use (Beggrow and Nehm

2012; Rector et al. 2013). For example,

Interviewer …how would biologists explain how a

living cactus species with spines evolved

from an ancestral cactus species that lacked

spines?

Participant E I guess that could be similar with either,

like a genetic mutation or maybe a genetic

drift and, uh, just, could also have to do

with, uh, like being an anti-predatory

defense to, uh, protect it since it’s in a

harsh environment already, they kinda [sic]

Table 2 Possible outcomes for

comparison of pair of

participants A and B

Comparison of participants

‘‘A’’ and ‘‘B’’

Interview measure of ability

A ordered above B A and B equal A ordered below B

Computer measure of ability

A ordered above B Full concordance Half discordance Full discordance

A and B equal Half discordance Full concordance Half discordance

A ordered below B Full discordance Half discordance Full concordance
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Table 3 Percentage of participants using individual key concepts (KCs) and naive ideas (NIs) in each item across assessments

Concepts Interview Human Computer CINS

Item % Item % Item % Item %

Variation (KC) Snail 89.4 Snail 53.8 Snail 50.0 6 67.3

Lily 83.7 Lily 37.5 Lily 38.5 9 71.2

Opossum 86.5 Mouse 45.2 Mouse 44.2 16 96.1

Cactus 88.5 Grape 47.1 Grape 43.3 19 79.4

Average 87.0 Average 45.9 Average 44.0 Average 78.5

Heritability (KC) Snail 59.6 Snail 19.4 Snail 18.3 7 79.8

Lily 58.7 Lily 11.5 Lily 9.6 17 54.5

Opossum 51.9 Mouse 15.4 Mouse 14.4

Cactus 53.8 Grape 14.4 Grape 15.4

Average 56.0 Average 15.2 Average 14.4 Average 67.1

Competition (KC) Snail 24.0 Snail 2.9 Snail 2.9 5 90.4

Lily 12.5 Lily 1.9 Lily 1.9 15 83.5

Opossum 11.5 Mouse 1.0 Mouse 1.0

Cactus 14.4 Grape 1.0 Grape 1.0

Average 15.6 Average 1.7 Average 1.7 Average 86.9

Limited resources (KC) Snail 76.9 Snail 25.2 Snail 24.0 2 95.2

Lily 62.5 Lily 16.3 Lily 14.4 14 81.6

Opossum 46.2 Mouse 8.7 Mouse 8.7

Cactus 87.5 Grape 9.6 Grape 8.7

Average 68.3 Average 15.0 Average 13.9 Average 88.4

Differential survival (KC) Snail 69.2 Snail 54.8 Snail 52.9 10 81.7

Lily 71.2 Lily 51.0 Lily 44.2 18 82.5

Opossum 73.1 Mouse 51.9 Mouse 43.3

Cactus 75.0 Grape 46.2 Grape 40.4

Average 72.1 Average 51.0 Average 45.2 Average 82.1

Non-adaptive idea (KC) Snail 1.9 Snail 1.9 Snail 1.9

Lily 1.9 Lily 1.9 Lily 1.9

Opossum 3.8 Mouse 4.8 Mouse 3.8

Cactus 1.0 Grape 1.9 Grape 1.9

Average 2.2 Average 2.6 Average 2.4

Need/goal (NI) Snail 33.7 Snail 19.2 Snail 19.2

Lily 26.9 Lily 18.3 Lily 24.0

Opossum 32.7 Mouse 29.8 Mouse 28.8

Cactus 15.4 Grape 15.4 Grape 14.4

Average 27.2 Average 20.7 Average 21.6

Use/disuse (NI) Snail 5.8 Snail 3.8 Snail 6.7

Lily 12.5 Lily 3.8 Lily 3.8

Opossum 12.5 Mouse 6.7 Mouse 8.7

Cactus 4.8 Grape 0.0 Grape 1.0

Average 8.9 Average 3.6 Average 5.0

Adapt/acclimation (NI) Snail 12.5 Snail 7.7 Snail 14.4

Lily 10.6 Lily 9.6 Lily 13.5

Opossum 18.3 Mouse 8.7 Mouse 11.5

Cactus 8.7 Grape 6.7 Grape 14.4

Average 12.5 Average 8.2 Average 13.5
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have to guard themselves from anything

that’s going to get water out of them.

Interviewer You said that it could be a genetic mutation

or genetic drift, can you explain what you

mean by genetic drift?

Participant E I always forget the definition of genetic

drift. Um, it’s kinda [sic] just like, uh, a

swing towards one extreme instead of

where it was before, but I guess, so I

guess that kind of takes away from what I

was going towards, I guess, kinda [sic]

contradicted myself.

Interviewer What’s swinging? What is that is swinging

towards one extreme?

Participant E Uh, just kinda [sic] like, the genetic

makeup or the, uh, actual structures that

are present are kinda [sic] more of a shift

from one to another based on the pressures

that they’re getting from the environment

or from, from other species around them.

Interviewer When you say structures, do you mean,

um, what do you mean by that?

Participant E Um, sorta [sic] like the actual spines, in

this case, or uh, the the [sic] cells within,

that are used to maintain the water and the

moisture and hold it.

Interviewer And how, how does that process of

swinging towards one of the extremes or

another come about?

Participant E Um, I guess that would be more, type of a,

kind of, more of natural selection, where

they’re, where if they don’t change then

they’re just going to die out, so without, if

the, if they didn’t develop the spines,

there’d be no way for them to completely

protect themselves, they would, without

spines they’d probably evolved in another

way and came up with some sort of poison

or something else that would have deterred

predators and stuff from eating them.

Here, Participant E begins by using the key concept of

genetic drift, which would be scored as a non-adaptive idea

in the written ACORNS. However, upon further question-

ing, the participant demonstrates a lack of understanding of

what genetic drift actually means and instead provides an

adaptive explanation for this non-adaptive mechanism.

This example illustrates how follow-up questions provide

justification for using interviews as a ‘‘gold standard;’’ they

are crucial for elucidating participants’ knowledge and

understanding.

Scores from different assessments were often in strong

alignment (see ‘‘Methods,’’ beginning p. 7, for details on

how each type of score was derived). For example, Par-

ticipant A had a Rasch person measure of 2.85 for the

twelve CINS items (raw score of 18 out of 20 on the full

CINS assessment), had a KC&NI Rasch person measure of

1.89 on the computer-scored ACORNS, and 1.8 for the

human-scored ACORNS (average raw NI score of 0 and

raw KC score of 3.25). Furthermore, Participant A was able

to provide scientifically normative explanations for each

interview item (including both adaptive and non-adaptive

concepts) and had Rasch KC&NI person measures of 2.46

(average raw interview score of 4.5 KCs):

Interviewer …how would biologists explain how a

living cactus species with spines evolved

from an ancestral cactus species that

lacked spines?

Participant A Well most biologists would suggest that

you had your ancestral cactus species that

did not have any spines and within that

population of cacti you had the variation,

whether that variation came from

mutation, or introduced genes from

another species, you know, like a weird

cross-cactus pollination event or

something, but gene flow in that way.

And once the variation got into the

population it somehow, the presence of

spines became more prominent and then

eventually fixed within the species. And

the ways, the mechanisms that it would

probably go from being a minority to a

majority would either be genetic drift,

where it’s kinda [sic] random,

happenstance, you know, maybe all the

cactus got wiped out by a flood, except for

the guy, you know, the four cactus over

there that had spines so this new group of

cactus all have spines because, uh, the

parent stock all had spines, or maybe it

was just kinda [sic] random and the gene

went from being prominent to rare and

back and forth until it reached fixture. Or

you could have natural selection where

you’ve got, you know, maybe a new

predator came into the area and was

feeding on the cactus, but it wasn’t

feeding on the spiny cactus because they

don’t like getting poked in the face. And

when all of the non-spiny cactus got eaten,

the only ones left were spiny ones and

when they bred offspring, you know, some

of them were probably spiny and some of

them weren’t but only the spiny ones
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survived and then eventually all of the

cactus have spines. And that’s more of a

natural selection based explanation.

Interviewer Alright.

Participant A Because there was a reproductive

advantage to have spines… you’d have a

gradual switch of cacti.

In this particular explanation, Participant A includes

four KCs and no NIs. Participant A’s explanation demon-

strates a clear understanding of evolution by both natural

selection and genetic drift.

In contrast, Participant B performed poorly on the CINS

and had a Rasch person measure score of 0.02 (raw score of

8/20), a KC&NI person measure of -3.03 for the com-

puter-scored ACORNS, and -2.72 for the human-scored

ACORNS (average raw scores: 1 NI and 0 KCs for each

ACORNS item). Additionally, Participant B had a KC&NI

person measure of -2.24 (raw interview scores demon-

strated an average of 0.5 KCs and 1.5 NIs per item):

Participant B Um, (laughter), um basically changing

over time, over a long long [sic] period

of time.

Interviewer And what, exactly, is changing?

Participant B Hm (laughter), um, I guess just adapting,

changing to its environment.

Interviewer You also use the term adapt, adapting, um,

what do you mean when you use that term?

Participant B Um basically that it would see the cha- or

see the environment around itself and, uh,

you know the trait will, either stay or,

change whether it’s being used or not in

that environment.

Interviewer So the trait will stay or change depending

on, um, whether it’s being used—

Participant B —surroundings, and yeah, if it’s being used.

Interviewer Ok. (pause) And, how would the biologist

explain that the trait came to-, or uh arrived

in the first place?

Participant B Uh, basically that the need for a tail, uh,

became necessary due to whatever

environment it was living in.

The incorporation of both naive ideas and key concepts

into an explanation, as Participant B did above, was com-

mon in our sample. While a handful of participants did not

use KCs in one or two interview items, all participants

managed to use a KC in at least half of their explanations

ACORNS Written Explanations

Overall, participants took an average of 9.88 min to com-

plete the ACORNS assessment (minimum 1.67 min;

maximum 36.98 min). A scientific reasoning model is

exemplified by Participant G’s response for the item, ‘‘How

would a biologist explain how a living species of snail with

teeth evolved from an ancestral species of snail that lacked

teeth?’’

Participant G In an ancestral population of snails lacking

teeth the snails would have variety of heritable

traits. In that initial population of toothless

snails, some snails might have mutations that

give them teeth-like structures in their

mouths. Those snails in the population with

teeth-like structures would somehow be

favored by their environment, they might

have access to a wider variety of food. Those

snails would exhibit greater reproductive

success among their population and the

genes for teeth-like structures would become

more frequent generation after generation.

Some snails would have more developed

teeth-like structures and be favored among the

population for reproduction. After many

generations of pressures favoring teeth the

snail population would be full of toothed

snails.

In contrast, a naive reasoning model is demonstrated by

Participant H’s response to the item involving a species of

mouse. This response includes all three naive ideas but

lacks key concepts:

Participant H That over time the mouse did not need the

claws (they became useless to them) and

they became [sic] adapted without them.

The claws became a hinderance [sic] and

cost the animal to keep the claws they did

not use.

Human-Scored ACORNS

The highest score consisted of 0 NIs and 13 KCs for all

four items (n = 2). The lowest score consisted of 4 NIs and

0 KCs for all four items (n = 1). When all of the human-

scored ACORNS explanations were pooled together, there

was a minimum of 0 NIs, a maximum of 8 NIs, a minimum

of 0 KCs, and a maximum of 13 KCs. The average total

amount of NIs used by participants was 1.30 (SD = 1.67).

The average total amount of KCs used by participants was

5.25 (SD = 3.13).

Computer-Scored ACORNS

Scores were similar between the computer-scored expla-

nations and the human-scored explanations. The highest
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computer-generated score consisted of 0 NIs and 13 KCs

across all four items (n = 2). The lowest score consisted of

4 NIs and 0 KCs across all four items (n = 2). The com-

puter-scored ACORNS had the same minimum and maxi-

mum of NIs and KCs used (0, 8; 0, 13, respectively). The

average number of NIs used by participants was 1.61

(SD = 1.84), and the average number of KCs was 4.87

(SD = 3.18).

CINS Multiple-Choice Assessment

The CINS takes less than 30 min for participants to com-

plete (Anderson et al. 2002; however, specific response

times were not reported for their study). Overall, partici-

pants did well on the CINS, although a broad range of

scores was obtained; the average score was 15.37 (out of 20

total). The highest score was 20 (n = 11) and the lowest

score was 4 (n = 1).

Assessment Comparisons

There was some variation in participants’ use of scientific

and naive ideas across assessments (Table 3). A greater

percentage of participants used scientific ideas in the

interviews compared to written explanations and for some

concepts, the differences between assessment scores were

considerable (Table 3). For example, an average of 87 %

of participants used variation in their clinical interview

explanations, whereas less than 50 % of participants used

variation in their ACORNS explanations. Slightly fewer

than 80 % of participants selected variation in their CINS

responses, which is more similar to the clinical interviews

than to the ACORNS written explanations.

The percentage of participants selecting concepts on the

CINS did not always align with the interview, however. In

the clinical oral interviews, 15.6 % of participants used

competition, compared to \2 % on the written ACORNS

and 86.9 % of participants on the CINS. While the average

percentage of participants using concepts differed between

interview items and ACORNS items, the patterns of usage

were similar: variation was used the most, followed by

differential survival, heritability, and limited resources—

which were roughly the same—and competition was the

least common. The CINS results also differed from the

other two assessments (ordered from most to least frequent:

Limited resources, competition, differential survival, vari-

ation, and heritability), though the differences between

concept frequencies within the CINS were relatively

smaller (see Table 3 for details).

Differences in the percentages of participants using

naive ideas in the interviews and ACORNS were not as

large as those of participants demonstrating scientific ideas.

For example, 27.2 % of participants used the NIs of needs/

goals in the clinical interviews, whereas approximately

20 % of participants used needs/goals on the written

ACORNS. Compared to the very large gaps observed

between the concept frequencies of variation and herita-

bility among items, the percentage gaps between assess-

ments for participants using NIs were relatively smaller.

The patterns for NIs were also similar for the interview and

ACORNS explanations, with needs/goals being the most

common, followed by adapt/acclimation and use/disuse

(Table 3).

We used Rasch analysis to examine the degree to which

our data fit a Rasch model and to appropriately compare

score patterns among the instruments by transforming raw

scores to person and item measures (which to our knowl-

edge has not been done in previous instrument comparison

work). Table 4 illustrates the person and item MNSQ and

ZSTD values, separation values, and reliability statistics

for each of the assessment methods. Outfit MNSQ revealed

that the CINS did not meet this quality control benchmark

(values should be \1.3; Bond and Fox 2001). Although

item reliabilities for all four assessments met the bench-

mark ([0.9), the person reliability for the clinical inter-

views was the highest (0.70), followed by the human-

scored ACORNS written assessment (0.61), computer-

scored ACORNS written assessment (0.60), and finally, the

CINS (0.41).

We explored how closely (1) the human-scored KC

measures from the ACORNS, (2) the computer-scored KC

measures from the ACORNS, and (3) CINS measures were

associated with the KC measures from the clinical inter-

views (Fig. 1). The results showed that approximately

30.4 % of variance in the clinical interview measures was

explained by human-scored KC measures from the

ACORNS and 31.5 % of the variance in the clinical

interviews was explained by the computer-scored KC

measures from the ACORNS, while only 12.0 % of the

variance in the clinical interview KC measures was

explained by the CINS measures, that is, the correlation

between the human-scored ACORNS KC measures and

clinical interview KC measures was 0.551 and the corre-

lation between the computer-scored ACORNS KC mea-

sures and clinical interview KC measures was 0.561, while

the correlation between the CINS measures and clinical

interview KC measures was 0.346. The correlation between

the human-scored KC measures and the computer-scored

KC measures from the ACORNS was 0.964.

We also examined how successfully the human-scored

KC&NI measures and the computer-scored KC&NI mea-

sures from the ACORNS explained the variance seen in the

KC&NI measures from the clinical interviews (Fig. 2). The

correlation between the human-scored ACORNS KC&NI

measures and the clinical interview measures was 0.611,

and the correlation between the computer-scored ACORNS
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KC&NI measures and clinical interview measures was

0.633. The correlation between the human-scored KC&NI

measures and computer-scored KC&NI measures was

0.960. Our analyses also found that approximately 37.3 %

of the variance in the clinical interview KC&NI measures

was explained by the human-scored KC&NI measures, and

40.0 % of the variance in the clinical interview KC&NI

measures was explained by the computer-scored KC&NI

measures. The results illustrate that computer-scored

written explanations have remarkably strong correspon-

dence with oral interview measures, are capable of cap-

turing participants’ KCs and naive ideas as accurately as

human-scored measures, and do not strongly align with the

MC CINS assessment.

The ordered participant pair comparisons provided the

most precise approach for examining our overarching

research question: How closely did the different instru-

ments align with the ‘‘gold standard’’ clinical oral inter-

views? In the ordered participant pairs analysis, the KC

measures of the computer-scored written explanations had

the highest concordance with the clinical interview

(61.0 %; Table 5). The CINS assessment had the lowest

concordance with the interview (52.9 %; Table 5), mean-

ing that there were more pairs of participants ranked dif-

ferently between the CINS and interview compared to the

computer-scored and the human-scored written explana-

tions (see Table 2 for possible outcomes). For the KC&NI

measures, the computer-scored written explanations

(65.7 %) had slightly greater concordance with the inter-

views than did the human-scored written explanations

(64.3 %; Table 5).

Ordered participant pair comparisons were also plotted

against one another to illustrate differences between the

assessments in terms of their discordance with interview

measures (Figs. 3, 4). Ordered participant pairs that were

generated using KC person measures showed that the

computer-scored ACORNS was in agreement with the

interviews more often (71 participants) than was the CINS

(30 participants) and three participants had equal agree-

ment (see Fig. 3a). The human-scored ACORNS KC per-

son measures were more often in agreement with the

interview measures (69 participants) than were the CINS

KC measures with interview measures (35 participants)

(Fig. 3b). The computer-scored ACORNS KC measures

had greater agreement with the interview measures (66

participants) than did the human-scored ACORNS KC

measures with the interview measures (33 participants),

and the measures had equal agreement for five participants

(see Fig. 3c). For the KC&NI measures, the computer-

scored ACORNS measures were more often in agreement

with the interview measures (56 participants) compared to

the human-scored ACORNS measures with the interview

measures (42 participants) (six participants showed equal

agreement; see Fig. 4). These results are in general align-

ment with the regression results (discussed above),

although they more precisely illustrate the greater con-

cordance of computer-scored written explanation measures

with clinical oral interview measures for KC measures and

KC&NI measures.

Evolutionary Reasoning Models Across Items

In addition to examining the components of participants’

explanations, we also classified each participant into one of

four different reasoning models (e.g., scientific model,

mixed model, naive model, or no model) based on their

interview and ACORNS responses (note that the CINS

could not be analyzed in this way). This classification was

carried out using two different approaches. In the first

approach, participants were classified into reasoning pat-

terns based on their explanations for each of the four items

across the different assessments. Using this method, the

average percentage of explanations demonstrating a sci-

entific model in the clinical interviews and the written

Table 4 Item fit statistics derived from the Rasch analysis

Outfit Separation Reliability

MNSQ ZSTD

KC

Interview

Item 0.97 0.00 5.47 0.97

Person 0.97 0.00 1.53 0.70

Human

Item 1.05 0.10 3.78 0.93

Person 1.04 0.20 1.24 0.61

Computer

Item 1.06 0.10 3.62 0.93

Person 1.03 0.20 1.23 0.60

CINS

Item 1.36 0.50 3.02 0.90

Person 1.32 0.10 0.83 0.41

KC&NI

Interview

Item 0.94 0.00 5.70 0.97

Person 0.94 0.00 1.72 0.75

Human

Item 1.26 0.10 5.84 0.97

Person 1.07 0.10 1.63 0.73

Computer

Item 1.25 0.20 5.68 0.97

Person 1.07 0.10 1.66 0.73

MNSQ above acceptable range bolded
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ACORNS was similar (interview: 63.2 %, human-scored

ACORNS: 58.9 %, and computer-scored ACORNS:

51.9 %; Fig. 5), whereas the percentage of mixed models

(interview: 34.6 %, human-scored ACORNS: 16.3 %, and

computer-scored ACORNS: 18.0 %), naive models (inter-

view: 1.9 %, human-scored ACORNS: 8.9 %, and com-

puter-scored ACORNS: 13.2 %), and no model (interview:

0.2 %, human-scored ACORNS: 15.9 %, and computer-

scored ACORNS: 16.8 %) shown in both interviews and

ACORNS were different.

Evolutionary Reasoning Models Across Participants

Using this approach, participants’ reasoning patterns were

averaged across all of the items in order to provide an

overall reasoning pattern for each participant. This second

method yielded somewhat different results compared to

those discussed above (the across-item analysis). The per-

centage of participants using a scientific model across

assessment methods was relatively lower (interview:

32.7 %, human-scored ACORNS: 46.2 %, and computer-

Fig. 1 The linear regressions of the person measures for KCs for human-scored and computer-scored ACORNS and the CINS. All y-axes reflect

the interview KC person measures. R2 represents the effect size
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scored ACORNS: 39.4 %), while the percentage of par-

ticipants exhibiting mixed models was higher (interview:

67.3 %, human-scored ACORNS: 49.0 %, and computer-

scored ACORNS: 53.8 %; Fig. 6). Using the second

method of analyzing models, both the naive model and the

no model categories were quite low, with no participants

exhibiting naive models or no models in the interviews,

and fewer than 6 % exhibiting naive or no models in the

human-scored and computer-scored ACORNS (Fig. 6).

Depending upon whether participants were categorized by

individual-item analyses or by across-item analyses, dif-

ferences in the percentages of reasoning patterns were

apparent. Overall, however, the across participants method

(method 2) displayed the greatest degree of similarity to the

clinical oral interviews.

Discussion

General Discussion

The new Framework for Science Education (National

Research Council 2012) emphasizes the centrality of sci-

entific practices—such as explanation, argumentation, and

communication—in science teaching, learning, and

assessment. A major challenge facing the field of science

education is developing assessment tools that are capable

of validly and efficiently evaluating these practices and the

ideas expressed within them. While many studies have

compared the similarity of human-scored and computer-

scored writing products (reviewed in Magliano and

Graesser 2012), remarkably few studies have compared

Fig. 2 The linear regressions of human and computer KC&NI person measures. All y-axes reflect the interview KC&NI person measures.

R2 represents the effect size

Table 5 Discordance levels for

three instruments versus

interviews for ordered

participant pairs based on KC

measures and on KC&NI

measures

Full

discordance

(%)

Half

discordance

(%)

Full

concordance

(%)

Mean ± SD

(n = 104)

(%)

KC

Human-scored ACORNS versus interview 24.6 16.0 59.5 32.5 ± 15.4

Computer-scored ACORNS versus interview 23.7 15.3 61.0 31.3 ± 15.0

CINS versus interview 26.6 20.6 52.9 36.8 ± 15.5

KC&NI

Human-scored ACORNS versus interview 23.5 12.2 64.3 29.6 ± 15.9

Computer-scored ACORNS versus interview 22.2 12.1 65.7 28.2 ± 14.3
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computer-scored scientific explanations to the educational

‘‘gold standard’’ of clinical oral interviews. Indeed, that

was the central question guiding our study: How well do

computer-scored written explanation task scores align with

clinical oral interview scores?

Written explanations are time-consuming for students to

take and for instructors to grade. Education researchers have

turned to technology in the hope that computer scoring is

able to bridge the gap between the efficiency of MC tests and

the richness of written explanations. While recent research

with machine-learning software has shown that automated

computer-scoring models (ACSM) can generate scores of

evolutionary explanations (and several other topics)

comparable to those generated by human experts (Ha et al.

2011; Nehm et al. 2012b), the question remains as to how

closely computer-generated explanation scores approximate

the gold standard of clinical oral interview scores, that is, it

is entirely possible that while human-scored and computer-

scored written assessments are in strong alignment, neither

approach might approximate the communication and

explanation skills exemplified by a clinical oral interview

and emphasized in the new Framework for Science Edu-

cation (National Research Council 2012).

Another significant limitation of prior empirical work

comparing assessment formats is the near-exclusive use of

measures derived from classical test theory (CTT) despite

Fig. 3 A comparison of assessments using ordered participant pairs’

KC measures. Each point in the plot shows the a computer-scored

ACORNS versus interview and CINS versus interview, b human-

scored ACORNS versus interview and CINS versus interview, and

c computer-scored ACORNS versus interview and human-scored

ACORNS versus interview discrepancies evaluating a participant’s

ability (in terms of KC measures) in comparison with other

participants in the class. For example, consider the participant

represented by the point marked with the ‘‘X’’ (Fig. 3a). The

interview ordered that participant’s ability differently than the

computer-scored ACORNS in comparison with only 6 % of the

other participants in the class but differently than the CINS score for

about 50 % of the other participants. Participants, such as ‘‘X,’’ for

whom the computer-scored ACORNS measure of ability was more

often in agreement with the interview compared to the CINS measure,

are shown as light gray (points falling below the diagonal) and

account for 71 of the 104 members of the class. The computer

measure of ability was less often in agreement with the interview

compared to the CINS measure for 30 students (black points falling

above the diagonal), while 3 participants (dark gray squares) show

the computer-scored ACORNS measure and CINS having equal

average agreement with the interview. For b, there are 35 black dots

(human-scored ACORNS less often in agreement with interview), 69

gray dots (CINS less often in agreement with interview), and 0 gray

squares (equal agreement). For c, there are 33 black dots (computer-

scored ACORNS less often in agreement with interview), 66 gray

dots (human-scored ACORNS less often in agreement with inter-

view), and 5 gray squares (equal agreement)
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the well-known advantages of using alternative approa-

ches, such as IRT and Rasch (Boone and Scantlebury

2006). Rasch analysis ensures equivalent scaling and gen-

erates mean of fit indices that allow for rigorous assessment

of reliability and validity. Rasch provides the means for

evaluating not just the quality of an entire instrument, but

participant performance as well. For these reasons, our

study attempted to more rigorously evaluate the corre-

spondence of different assessment methods using Rasch

analyses.

The comparative framework for our study is also note-

worthy. Many comparisons of human-scored and com-

puter-scored text use only one comparative frame (e.g.,

agreement patterns in one type of score). Our study, in

contrast, makes comparisons across several frameworks—

within-item individual normative scientific key concepts

and naive idea measures, across-item reasoning element

measures, and holistic mental model portraits that are

characteristic of different forms of reasoning (e.g., mixed

models and scientific models). Comparing performance

patterns across assessment formats using different com-

parative frames helps to more rigorously establish the

generalizability of ACSM efficacy.

A final aspect of our study differs from prior work.

While many studies, like our own, report general levels of

raw agreement between methods, correlations between

assessment scores, and Kappa statistics quantifying agree-

ment (all using CTT-based assumptions), our Rasch-based

comparisons were also conducted using a new participant

pair ordering method that more precisely compares the

performance of individual participants across assessment

types. Collectively, our empirical approach attempts to

rigorously examine the efficacy of ACSMs for scoring

evolutionary understanding, which is recognized as one of

four core content areas in the life sciences (National

Research Council 2012).

Assessment Correspondence Patterns

The item fit statistics derived from Rasch analysis dem-

onstrated that (1) the computer-derived scores from the

written explanations and (2) the human-derived scores

from the oral and written explanations conformed to the

Rasch model but the CINS scores did not. Both item and

person fit statistics for the CINS did not meet the Rasch

model expectations, meaning that the ability levels of the

students and difficulty levels of the items were poorly

matched. More than expected by the model, low-ability

students can thus perform well on high-difficulty items

while high-ability students can perform poorly on low-

difficulty items (Bond and Fox 2001). Thus, despite being a

widely used test, in our sample of students, the CINS did

not appear to accurately assess students’ evolutionary

knowledge (corroborating work by Battisti et al. 2010).

Overall, the measures derived from the clinical oral inter-

view best fit the Rasch model, which lends further support

Fig. 4 A comparison of assessments using ordered participant pairs’

KC&NI measures. Each point in the plot shows the computer-scored

ACORNS versus interview and human-scored ACORNS versus

interview discrepancies evaluating a participant’s ability (in terms

of KC&NI measures) in comparison with other participants in the

class. Participants for whom the computer-scored ACORNS measure

of ability was more often in agreement with the interview compared

to the human-scored ACORNS measure are shown as light gray

(points falling below the diagonal) and account for 56 of the 104

members of the class. The computer-scored ACORNS measure of

ability was less often in agreement with the interview than the CINS

measure for 42 students (black points falling above the diagonal),

while 6 participants (dark gray squares) show the computer-scored

ACORNS measure and human-scored ACORNS measure as having

equal average agreement with the interview
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to its status as a ‘‘gold standard;’’ computer-generated

measures also aligned very well with the best-fit standard

set by the interviews.

The computer-scored measures were strongly aligned

with interview measures. Pearson correlations demon-

strated that computer-generated KC measures were more

strongly associated with interview measures than were the

CINS measures. While the computer-generated KC mea-

sures predicted the interview KC measures at a level

comparable to human-generated measures, the CINS pre-

diction levels were considerably lower, making it a poorer

indicator of student knowledge. Therefore, although the

CINS may be able to measure aspects of student knowl-

edge (i.e., KCs), it may not be able to accurately measure

the full extent of that knowledge (such as KCs and NIs).

While at first glance the 0.551 and 0.561 correlation

coefficients between the KC measures of clinical inter-

views and the human-scored and computer-scored

ACORNS assessments (respectively) are only moderate

(0.50–0.60), it is important to keep in mind that the

assessments themselves were different in terms of test

format (interview vs. writing), that is, the correlation

coefficients were not used to measure parallel forms

equivalency. Moreover, judging the ‘‘highness’’ and

‘‘lowness’’ of correlation coefficients using absolute

numerical values can be misleading; instead, the correla-

tion coefficients are useful for comparing between two

competing values. Our discussion is focused on the com-

parisons of interview measures and written assessment

(ACORNS) measures on the one hand, and of the corre-

lation between interview measures and multiple-choice

assessment (CINS) measures on the other; our goal was not

to examine the absolute magnitudes of the correlation

coefficients. Indeed, it is not unexpected to find robust (but

moderate) correlation magnitudes on tests of the same

domain but focusing on different tasks (e.g., oral vs.

written vs. selected response). The important point is that

the coefficients of 0.551 (human-scored KC measures and

interview KC measures) and 0.561 (computer-scored KC

measures and interview KC measures) are relatively high

compared to the CINS KC measures and interview KC

measures coefficient of 0.346. In sum, we found that

computer scoring not only successfully predicts interview

KC measures, but that it also successfully predicts the

KC&NI measures of the interviews as well as human

scoring.

Our findings demonstrating the efficacy of computer

scoring were also corroborated using the ordered-pair

analyses. Specifically, Rasch-based, ordered-pair compar-

isons of students for both KC and KC&NI measures

demonstrated that computer-generated measures had

greater concordance with interview measures compared to

the CINS measures or the human measures. In other words,

Fig. 5 Evolutionary reasoning models across items. The percentage

of reasoning patterns captured by three different metrics and

categorized by averaging participants’ scores for each item and

getting an average score/item for the sample. Y-axis represents

percentage of participants. Snail and lily item are common across all

three metrics. Contextual features are designated next to the item

taxa; thus, A represents an animal taxa, P represents a plant taxa,

G represents the gain of a trait, and L represents the loss of a trait

(e.g., AG = an item in which an animal gains a trait)

Fig. 6 Evolutionary reasoning models across participants. The per-

centage of reasoning patterns captured by three different metrics and

categorized by averaging each individual participant’s performance

across items and getting an average model for each participant. Y-axis

represents percentage of students
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the order of participant pairs that computer-scored mea-

sures generated had strong agreement with the order the

interview measures generated more often than the CINS

measures or the human-scored measures. This indicates

that the computer scoring of written explanations will

provide more consistent results with interview evaluations

than the alternatives included in this study (i.e., human

scoring of written explanations and the MC CINS test).

Overall, we found that computer-scored written expla-

nation measures have stronger correspondence with clini-

cal oral interview measures than did the multiple-choice

CINS. Computer scoring is also comparable to human

scoring of written explanations, and computer-scored

written responses can exceed the performance of the most

commonly used MC test for measuring student thinking

about evolution. Computer scoring also overcomes the

limitations of MC science tests in general. First, assess-

ments of scientific practices, like the explanation-focused

ACORNS, allow students to respond to prompts using a

variety of reasoning models, consisting of many different

assemblages of cognitive elements (e.g., mixed models and

naive models). Second, the ACORNS takes into account

recent findings from cognitive science, specifically exam-

ining student reasoning across contextual surface features

(e.g., taxon and trait and loss or gain of trait), whereas the

CINS items only addresses one reasoning context (familiar

animals) (Opfer et al. 2012). Third, the ACORNS empha-

sizes recall of information, which is known to be a more

valid indicator of understanding in comparison with MC

recognition tests (Opfer et al. 2012). Considering that

computer scoring of written explanations negates the time

and cost constraints associated with constructed-response

formats, and that the scoring models and software are free,

the advantages of using the computer-scored ACORNS are

clear. Overall, the open-source LightSIDE program may

offer science educators in other domains (chemistry, earth

science) a solution to the challenge of developing valid and

efficient assessments of scientific practices and core ideas

(National Research Council 2012).

Patterns of Student Thinking About Evolution Across

Assessments

Despite differences in the fidelity of different methods to

the clinical interviews, the majority of student explanations

were categorized as either scientific models or mixed

models (The CINS prevents the clear identification of

mixed models). Thus, regardless of whether the students

were questioned orally or in writing, their conceptual

models were primarily built using purely normative ideas

or different magnitudes and types of normative and non-

normative ideas in combination. Importantly, purely naive

models were rarely found in our 104 participants. These

findings are in strong alignment with previous work on

undergraduate evolutionary reasoning and call into ques-

tion the cognitive validity of either–or MC evolution tests

(Beggrow and Nehm 2012; Nehm and Ha 2011; Nehm and

Schonfeld 2008).

Advantages of Oral Interviews Over Other Assessment

Methods

Clinical oral interviews have become a ‘‘gold standard’’ in

education research for assessing student knowledge and

reasoning because of the many advantages that they offer

(e.g., clarification and follow-up questioning) compared to

other assessment formats such as MC and written expla-

nations. Although MC and written formats typically pro-

hibit scorers from determining how students interpreted the

language used in the items, or what students meant by the

language that they used to answer the item, interviews

provide opportunities for resolving reasoning patterns and

lexical ambiguity. By engaging in conversation with stu-

dents, interviews also allow students to use unique com-

binations and arrangements of ideas that cannot be

documented in most extant MC assessments. Moreover,

interviews permit the evaluator to go beyond the compo-

sition of student thinking and detect the structure of that

thinking.

As no other study to our knowledge has ever included

such a large sample of clinical oral interviews on evolution,

our sample of 104 participants provided a unique oppor-

tunity to paint a detailed portrait of undergraduate students’

thinking about evolutionary change. Overall, we found that

students tended to provide similar explanations in their

interviews as they did in their ACORNS explanations,

although interviews tended to generate much more infor-

mation. In other words, follow-up questioning, along with

the extra time associated with such questioning (e.g., oral

interview items lasted about 3.45 min each while

ACORNS items lasted only 2.44 min each), appears to

have produced richer (though not necessarily more accu-

rate) explanations in general, which translated into higher

frequencies of key concepts and naive ideas (relative to

written responses). Unsurprisingly, more time spent on an

assessment task is associated with the documentation of

more ideas (see Beggrow and Nehm 2012).

Analyses of the clinical interviews revealed that the

majority of students in our sample had a very difficult time

providing explanations of evolutionary change. Specifi-

cally, most students failed to provide a complete explana-

tion in response to the oral interview prompts; indeed,

several follow-up questions were often needed to elicit an

explanation from the students. Nonetheless, interviews

were informative and revealed that while the majority of

students use normative key concepts of evolutionary
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change (e.g., variation, heritability, and differential sur-

vival), most students also included non-normative naive

ideas. Furthermore, although many students used scientific

‘‘buzz’’ words in their explanations, in some cases follow-

up questioning revealed that the students lacked an accu-

rate understanding of those terms. This is a challenge

inherent to scoring written explanations.

Our large sample of interviews with students demon-

strated that many participants struggled to communicate

their ideas to the interviewer (see Clinical Oral Interviews

above). Participants displayed very limited science com-

munication skills, which has an impact on assessment and

research of student understanding. If students are not

capable of communicating their ideas, then instructors and

researchers’ will be unable to generate a clear picture of the

students’ reasoning models. The limited scientific com-

munication skills evident in our sample (see interview

transcripts above) highlight the need for increased oppor-

tunities for students to practice these abilities in the

classroom. Such communicative skills are in line with the

NRC recommendations (National Research Council 1996,

2001b, 2012). Communicative skills play a role in ‘‘making

students’ thinking visible to…themselves’’ (National

Research Council 2001b, p. 4), comprise a crucial com-

ponent of scientific literacy and necessitate that students

have the opportunity to practice expressing their thinking

in different ways (orally, visually in graphs, diagrams,

tables, etc.) (American Association for the Advancement of

Science 2011; National Research Council 2001a, b, 2012).

Unfortunately, commonly used MC assessments—used for

formative or summative purposes—fail to help students

hone their scientific communication skills (Nehm and

Haertig 2012; National Research Council 2012). While

interviews provide important opportunities for revealing

this core aspect of science literacy, they are impractical to

implement in the classroom. Written explanations provide

one alternative for helping students communicate their

ideas. Given that computer scoring of written explanations

is a robust approach (at least in the context of evolution), it

is a very promising teaching and learning tool for science

education.

Alternative Approaches for Categorizing Student

Evolutionary Reasoning Models

One of the purposes of assessment is to better understand

students’ conceptual frameworks so that instruction can be

designed accordingly (National Research Council 2001a,

b). In our study, we documented participants’ reasoning

patterns using two different methods—by averaging across

items for each participant or by averaging across partici-

pants for each item. While the across participants method

demonstrated greater alignment between the human-scored

and computer-scored ACORNS and the interviews, each

method of categorization offers instructors and researchers

different views of students’ reasoning patterns. For

instance, if a researcher is interested in how students reason

in particular contexts (e.g., trait loss in familiar animals),

then averaging student scores for particular items would be

most appropriate. Accordingly, instructors could adjust

their lessons to focus on what they found (e.g., mixed

reasoning models about trait loss in familiar animals).

However, if a researcher is interested in how a particular

student reasons about evolution in general (content mas-

tery), then documenting student reasoning across contexts/

items would be more appropriate. It is likely that the most

effective methodological strategy will depend on the

research or instructional questions being asked. Regardless

of which approach was used, computer scoring provided a

robust proxy for student reasoning models.

Study Limitations

One weakness of this study was the lack of exact alignment

of the CINS items with those of the ACORNS and clinical

oral interviews. Considering that the latter two assessments

were identical in format, it is perhaps not surprising that

their outputs were more strongly associated than was the

CINS. The ideal (but impractical) comparison study would

have been to build and validate an entirely new multiple-

choice test that more closely aligned with the ACORNS

and interviews. However, developing such an instrument

would have taken several years and been very costly. Given

this constraint, we employed the most widely used evolu-

tion instrument (the CINS) as a comparative benchmark.

This study limitation prevents us from conclusively dem-

onstrating that our results will apply in all MC formats, or

that interviews will always be more strongly associated

with computer-derived scores than with MC tests. In short,

our results may not generalize to other samples, instru-

ments, or content domains. Nevertheless, they do provide

robust support for the similarity of clinical interviews and

computer-scored explanations of evolutionary change,

which to our knowledge has not been investigated

previously.

Our study also specifically examined a subset of nine

concepts. Currently, only three robust computer-scoring

models for naive ideas and six for key concepts have been

developed. Previous research has demonstrated that other

naive ideas that we have not studied also occur in student

explanations (e.g., Beggrow and Nehm 2012; Nehm et al.

2012a). Therefore, as we build additional computer-scoring

models for additional naive ideas, the portrait of student

reasoning that our study painted may change. More

advanced machine-learning methods could also improve

upon the identification of student ideas, and build much
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more elaborate computational models of how students

reason about evolutionary change. The greater the diversity

of concepts that are detected using machine scoring mod-

els, the closer they are likely to approximate clinical oral

interviews.

Overall, our work indicates that machine-learning

methods are one important solution for validly and effi-

ciently evaluating core ideas (such as evolution) embedded

in scientific practices (National Research Council 2012).

However, further work is needed to begin assessing stu-

dents’ competencies in scientific practices themselves (e.g.,

Berland and McNeill 2012; Gobert et al. 2012; Songer

et al. 2009; Songer and Gotwals 2012).
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