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Abstract This study explored the use of machine learn-

ing to automatically evaluate the accuracy of students’

written explanations of evolutionary change. Performance

of the Summarization Integrated Development Environ-

ment (SIDE) program was compared to human expert

scoring using a corpus of 2,260 evolutionary explanations

written by 565 undergraduate students in response to two

different evolution instruments (the EGALT-F and EG-

ALT-P) that contained prompts that differed in various

surface features (such as species and traits). We tested

human-SIDE scoring correspondence under a series of

different training and testing conditions, using Kappa inter-

rater agreement values of greater than 0.80 as a perfor-

mance benchmark. In addition, we examined the effects of

response length on scoring success; that is, whether SIDE

scoring models functioned with comparable success on

short and long responses. We found that SIDE performance

was most effective when scoring models were built and

tested at the individual item level and that performance

degraded when suites of items or entire instruments were

used to build and test scoring models. Overall, SIDE was

found to be a powerful and cost-effective tool for assessing

student knowledge and performance in a complex science

domain.

Keywords Machine learning � SIDE � Text analysis �
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Introduction

Formative and summative assessments are increasingly

recognized as essential components of effective teaching and

learning (NRC 2001, 2007). High-quality assessments

focusing on core competencies and performances have

shown great promise in helping to foster meaningful learning

gains in students throughout the educational hierarchy (NRC

2001). Such findings have catalyzed efforts to develop new

assessment tools and practices that more closely mirror the

complex dimensions of authentic, real-world problem solv-

ing (NRC 2001, 2007; Wagner 2008; Gitomer and Duschl

2007). Coupled with educational reform, new tools are

needed to assess the types of skills that the twentyfirst cen-

tury American workforce needs; that is, skills that cannot be

easily automated, digitized, or outsourced (Wagner 2008;

Gitomer and Duschl 2007; NRC 2008). Internet search

engines and artificial intelligence machines, for example, are

currently capable of rapidly and accurately answering many

well structured questions, and yet these are the types of

problems often emphasized in K-16 multiple-choice

assessments (Wagner 2008; Markoff 2011). Simply put,

many assessments are not measuring the types of skills or

performances that are most highly valued by employers or

educational reformers (NRC 2001, 2007; The Conference

Board, Corporate Voices for Working Families, the Part-

nership for 21st Century Skills, and the Society for Human

Resource Management 2007).

Real-world biological problems are often ill-structured,

requiring performances such as task framing, weighing

the value and relevance of information, and assembling
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disparate knowledge elements into clear, logical, coherent

and complex explanatory structures (Nehm 2010). Most

high-stakes, multiple-choice assessments are only capable

of exposing a small set of the problem-solving processes

central to authentic scientific practice (NRC 2007). For

these reasons, multiple-choice assessments are often poorly

suited to assessing the most valuable skills and perfor-

mances in biology (and other domains). Current multiple-

choice assessments are also severely limited in their ability

to measure communication skills essential to success in

real world problem-solving environments. Indeed, written

communication, critical thinking, and problem solving

form a constellation of skills that employers agreed were

most needed for success in the twentyfirst century work-

place (Wagner 2008: 91).

While many students may be able to access and know

large amounts of information, they may nevertheless be

limited in their ability to organize and express such

understanding in a clear, logical, and persuasive manner.

Implementing assessments that help to reveal to students

their progress toward competence in this regard is essential

(NRC 2001). Such goals were highlighted by the NRC

more than a decade ago (2001: 5): ‘‘[a]ssessments need to

examine how well students engage in communicative

practices appropriate to a domain of knowledge and skill,

what they understand about those practices, and how well

they use the tools appropriate to that domain’’ (NRC 2001,

p. 5).

Increasing global competition for skilled workers has

also thrown light on the United States frequent reliance on

high-stakes, multiple-choice tests (Wagner 2008; NRC

2008). As noted by Andreas Schleicher, head of educational

indicators at the OECD, ‘‘United States students tend to be

rather good in multiple-choice tasks, when four choices are

clearly laid out. They have a much harder time when they’re

given open ended tasks’’ (cited in Wagner 2008: 94–95).

Given that performance-based assessments are increasingly

being used in higher education and in international com-

parisons (e.g., the Collegiate Learning Assessment [CLA]

and the Program for International Student Assessment

[PISA], respectively), it is important for students to have

opportunities for demonstrating their abilities in these

formats. Indeed, twenty-five percent of the Trends in

International Math and Science Study (TIMSS) assessment

items, for example, now require students to demonstrate

performance skills such as constructing explanations (Liu

et al. 2008: 35). Reliance on high stakes, multiple-choice

assessments may be sending the wrong message to students

about what knowledge and performances are valued outside

of schooling and in the workplace.

Ongoing national curriculum and instruction reform

(e.g., NRC 2008) must be aligned with the development of

innovative assessments that move away from inauthentic

performance tasks, such as the selection of carefully

packaged, discrete bits of pre-structured knowledge, and

towards the construction and communication of more

authentic tasks common to ill-structured, real-world prob-

lems (NRC 2001; Nehm and Haertig 2011). The question

arises as to what tools may be used for such complex

assessment tasks, and how well they function. To this end,

our study involves one small step towards developing more

innovative assessment practices in biology: the use of a

new technological tool known as the Summarization Inte-

grated Development Environment (SIDE) to automatically

analyze and score written explanations of evolutionary

change. We test the efficacy of this freely available soft-

ware package and illustrate how it may be used in biology

education more broadly.

Assessing Evolutionary Explanations

For the past 30 years, student-generated explanations of

evolutionary change have been used on a small scale for

assessing knowledge, revealing misconceptions, and mea-

suring conceptual growth in secondary school and under-

graduate populations (e.g., Clough and Driver 1986;

Bishop and Anderson 1990; Demastes et al. 1995; Nehm

and Reilly 2007; Nehm et al. 2010). Multiple-choice

assessments—which by their very nature limit opportuni-

ties for assessing students’ abilities to construct and com-

municate valid scientific explanations—have nevertheless

gained in favor and frequency because of their imple-

mentation ease and scoring simplicity in large samples.

Recent work in evolution assessment has highlighted

numerous limitations of extant closed-response (e.g.,

multiple-choice) evolution instruments and has called for

the broader adoption of open-response assessments (e.g.,

short answer or essay) to mitigate these limitations (Nehm

and Schonfeld 2008, 2010; Nehm and Ha 2011).

Despite the many advantages of open-response evolu-

tion assessments (for reviews, see Nehm and Schonfeld

2008; Nehm and Haertig 2011), in practical terms they also

carry with them a series of significant disadvantages. These

include: (1) rubric development and validation costs; (2)

scorer training costs; (3) grading time; (4) rater variability

and associated reliability threats; (5) grading fatigue; and

(6) interpretation difficulty. Fortunately, new tools and

technologies, collectively known as Computer Assisted

Scoring (CAS), are capable of addressing many of the

aforementioned disadvantages (Page 1966; Yang et al.

2002; Shermis and Burstein 2003). Several commercial

CAS tools for large-scale assessment, including C-rater

(Sukkarieh and Bolge 2008), E-rater (Burstein 2003),

Intelligent Essay Assessor (Landauer et al. 2001), and

SPSS Text Analysis (Galt 2008), are being employed with

increasing frequency in large-scale educational contexts.
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Despite the growing use of CAS in national-level

assessment projects, only one study to our knowledge has

explored the use of CAS tools at a smaller scale, and in the

complex but educationally important domain of evolu-

tionary biology (Nehm and Haertig 2011). Specifically,

Nehm and Haertig used SPSS Text Analysis 3.0 (SPSSTA)

to detect so-called Key Concepts of natural selection in

short answer responses to three prompts from the ORI

instrument of Nehm and Reilly (2007). Their study

revealed that the text analysis functions (or extraction

rules) developed and deployed in SPSS Text Analysis to

detect individual Key Concepts (KCs) produced ‘‘almost

perfect’’ agreement (Kappas 0.81–1.00) with expert human

raters in the majority of analyses (cf. Landis and Koch

1977). These promising findings were dampened by several

disadvantages of using SPSS Text Analysis: most notably,

the initial cost of the commercial product, and the immense

amount of time and expertise required to develop appro-

priate term libraries and to build text extraction rules

capable of performing the text analyses (Nehm and Haertig

2011).

SPSS Text Analysis is not the only program or method

available for CAS of evolutionary explanations. One rela-

tively new and freely available tool is the Summarization

Integrated Development Environment (SIDE) (Mayfield

and Rosé 2010). Unlike SPSS Text Analysis, the SIDE

toolkit utilizes machine learning to perform text analysis

(Witten and Frank 2005). SIDE is able to identify notable

aspects of a text, and use them to perform analyses of text.

Among other uses, this can include assigning a text to one

of a set of categories (e.g., classifying a movie review as

‘‘thumbs up’’ vs. ‘‘thumbs down’’), assigning a score to a

text based on some metric (e.g., automated essay grading

on an A–F scale), or producing a short summary of the

most relevant or notable facets that the text contains (e.g.,

extracting assigned tasks from a meeting transcript).

In the domain of Computer-Supported Collaborative

Learning (CSCL), SIDE and its predecessor TagHelper

Tools (Donmez et al. 2005) have been used in a variety of

ways: to automate or assist in coding student skills (Rose

et al. 2005), to assist human moderators in online student

discussions (McLaren et al. 2007), to trigger automated

support when needed in a group discussion (Kumar et al.

2007), and to identify methods of argumentation in student

collaborations (Rose et al. 2008). In contrast to these prior

studies, the goal of our work with SIDE is to replace costly

human scoring of evolutionary explanations with scoring

models built using machine learning.

The machine-learning algorithm of SIDE requires the

input of a set of features about an evolutionary explanation,

and produces as output a decision about whether that

explanation contains the key concepts of interest. The

algorithm does this by automatically finding patterns in the

text responses, and using these patterns to generate a map

linking input features and output judgment. In order to find

these patterns, a set of ‘‘training examples’’ must be pro-

vided; a human coder needs to evaluate each of the training

examples for the presence or absence of each concept.

Subsequently, the machine-learning model extracts pat-

terns that are most likely to function effectively. The set of

input features must be sufficiently expressive, and machine

learning must be able to make use of those features in a

general way so that they may extend to new data.

SIDE uses a simple representation, known as a ‘‘bag of

words’’ model, to build features. Specifically, a vocabulary

list is compiled of each word that appears in the training

examples, excluding extremely common words, such as

‘‘the’’ or ‘‘and,’’ which are not likely to carry useful

information about response content. It also excludes very

rare words (in our case, those which occur in fewer than

five of our 2,260 training examples). When a new response

is assessed, the model marks the presence or absence of

each word in the vocabulary list, along with a feature

indicating the number of words in the response. The fea-

tures are then analyzed with a Support Vector Machine

(SVM) model, which is considered state of the art in text

classification (for more information about this model, see

Witten and Frank 2005).

A core difference between SIDE and SPSSTA is that

SIDE was designed for what may be termed confirmatory

text analyses; that is, it functions superbly at elucidating

patterns that differentiate sets of previously categorized

text responses (e.g., democratic and republican speeches;

student papers with high grades and low grades, etc.) and

building scoring models based upon those categories.

SPSSTA, in contrast, it designed for what may be termed

exploratory text analysis; that is, when clear categories or

dimensions of text are not well established (when a scoring

rubric is absent, for example), the program may be used to

begin identifying possible terms, categories, and/or themes

in the corpus. While machine-learning approaches to this

type of analysis exist, under the domain of unsupervised

learning, they are not presently incorporated into SIDE.

Thus, the two tools approach text analysis quite differently.

In order to utilize SIDE for machine scoring, the only

materials that are needed are a corpus of scored responses

and the free program. SPSSTA, which costs[$1,000.00 for

an individual license, requires much more effort prior to

beginning the scoring process. First, the software lacks the

scientific vocabulary and verbs necessary for analyzing

evolutionary responses; these must be added manually or

obtained from another user who has done this work (Nehm

and Haertig 2011). Considerable content expertise may be

needed to define and build the term and type libraries

necessary for text extraction. For example, a library of

more than 450 biology terms and types needed to be
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manually built in Nehm and Haertig’s study using

SPSSTA.

After the term and type library is created in SPSSTA,

‘‘rules’’ must also be built that assist the program in

identifying which text combinations to tag in student

responses. The performance of these rules must be evalu-

ated relative to expert human scoring, and refined accord-

ingly. This process is iterative, and can take considerable

time and effort (hundreds of hours). The sophistication of

the rules is primarily constrained by human ingenuity, as

rules may be quite elaborate. Once rules are obtained and

demonstrated to function effectively (i.e., in comparison to

expert human scoring) they may be applied to new data

sets.

SIDE, in contrast, uses terms, types, and rules that dif-

ferentiate responses that are discovered automatically using

machine learning (Witten and Frank 2005). SIDE attempts

to build successful scoring models by discovering patterns

in human-coded responses. In so doing, SIDE performs

much of the difficult ‘‘rule-building’’ work that is done

manually in SPSSTA. There are advantages and disad-

vantages to this time saving step, however. It is quite dif-

ficult to understand the scoring models that SIDE

generates. While an interface is provided for exploring

model performance within SIDE, it requires considerable

background knowledge in machine learning. In compari-

son, the extensive labor involved in developing SPSSTA

types and rules ensures that the researcher is able to

directly trace the path from extraction rule to output score.

If SIDE could be shown to perform effectively in assessing

students’ written explanations of evolutionary change, it

would offer major financial and time advantages over other

tools, such as SPSSTA.

Research Questions

A key assumption when using machine learning tools (such

as SIDE) is that the training examples being employed are

representative of the responses to which the model will

subsequently be applied. A model that is built using

responses to one prompt will perform best when evaluating

other responses to the same prompt, of approximately the

same length and of the same style. It is not always possible,

however, to gather a large number of training examples for

every prompt that one wishes to assess. Consequently, it is

necessary to examine the generalizability of scoring mod-

els. One approach to examining model generalizability is to

build a scoring model using an entire instrument, and

examining the performance of the model on responses to a

different instrument. A more fine-grained approach is to

focus on individual items within an instrument that are

used to build a scoring model—for instance, by building a

model based on responses to an item about the evolution of

roses, but applying the model to responses to an item about

the evolution of snails. In this case, the underlying concept

being tested (e.g., the heritability of variation) remains the

same but the item context has changed. We used the

instrument-focused and item-focused approaches in our

study of the efficacy of SIDE.

Our study tests the efficacy of SIDE relative to human

expert scoring using student responses to two different

evolution instruments (the EGALT-F and EGALT-P) that

contain prompts (items) that differ in various surface fea-

tures (such as species and traits). We test human-SIDE

scoring correspondence under four different conditions:

Same Prompt, Same Instrument (SPSI); Same Prompt,

Different Instrument (SPDI); Different Prompt, Same

Instrument (DPSI); and Different Prompt, Different

Instrument (DPDI). Additionally, we examine the efficacy

of SIDE scoring of responses that differ in length and we

calculate the number of responses that are needed to

establish ‘‘near perfect’’ Kappa agreement levels (above

0.80) with human expert raters. Finally, we discuss our

findings relative to Nehm and Haertig’s (2011) related

work using SPSS Text Analysis and make recommenda-

tions for future work on automated scoring of students’

written evolutionary explanations and other performance

tasks.

Sample and Methods

We used a corpus of 2,260 evolutionary explanations

written by a sample of 565 undergraduates in our analyses.

The students who generated these explanations had varying

levels of evolution knowledge (specifically, non-majors

taking their first college biology course and first-year

majors completing a course employing evolution as a core

theme). Responses were gathered using an online response

system built within our university course management

system. The evolutionary explanations that we analyzed

were produced in response to a series of prompts about

evolutionary change contained in two instruments: the

Evolutionary Gain and Loss Test (EGALT) version F

(Familiarity) and the EGALT version P (Progression) (For

item details, see Nehm et al. 2010; Nehm and Ha 2011).

While the stems of the EGALT instrument items were

nearly identical, the species and traits in the items were

different both within and between instruments. Specifi-

cally, the EGALT-P items prompted explanations of trait

gains and losses between the following species/trait/change

combinations: Elm/seeds/gain; Rose/thorns/loss; Snail/

poison/gain; Penguin/flight/loss. The EGALT-F items

requested explanations of trait gains between the following

species/trait/change combinations: Snail/poison/gain; Elm/
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seeds/gain; Prosimian/tarsi/gain; Labiatae/pulegone/gain.

Thus, students’ written evolutionary explanations were

produced in response to a diverse array of biological sur-

face features.

For the EGALT F, responses were gathered from 320

undergraduate students enrolled in an introductory biology

course for majors. Demographically, the sample was 78%

White (non-Hispanic; n = 251) and 22% minority (African

American, n = 14; Asian, n = 28; Hispanic, n = 13;

Native American, n = 1; Other and non-disclosed,

n = 13), 55% female, and had an average age of 21 years

(SD = 2.3). Each student was administered four prompts

(see above) resulting in a total of 1280 responses. For the

EGALT P, responses were gathered from 245 undergrad-

uate students also enrolled in an introductory biology

course for majors. Demographically, this sample was

75.1% White (non-Hispanic; n = 184) and 24.9% minority

(African American, n = 19; Asian, n = 28; Hispanic,

n = 5; Native American, n = 1; Other and non-disclosed,

n = 7), 57.6% female, and had an average age of

20.7 years. Each student was administered four prompts

from the EGALT-P, resulting in a total of 980 responses.

Human Scoring of Evolutionary Explanations

Students’ evolutionary explanations are known to contain a

diverse array of explanatory elements, ranging from naı̈ve

to scientific, and assembled in various combinations and

permutations (Nehm and Ha 2011). Our analyses using

SIDE employed a construct-grounded approach, in which

we sought to identify the elements of scientific explanation

considered necessary and sufficient to account for evolu-

tionary change via natural selection (Nehm and Schonfeld

2010). Specifically, three so-called ‘‘core concepts’’ of

natural selection are considered necessary and sufficient

to explain natural selection: (1) the presence and causes

of variation, (2) the heritability of variation, and (3)

the differential reproduction and survival of individuals

(Patterson 1978; Endler 1992).

Student explanations of evolutionary change were gra-

ded by two expert human raters using the scoring rubrics of

Nehm et al. (2010). The first expert had a Ph.D. in evo-

lutionary biology, had published in this discipline, and had

taught biology for more than a decade. The second expert

had a master’s degree in biology and had published

extensively in the field of evolution education. In terms of

scoring, the presence or absence of the three core concepts

of natural selection (see above) was established via con-

sensus in all 2,260 student responses between these two

human raters. Overall, our study of machine scoring using

SIDE examined the detection and measurement of core

elements of content (the construct of natural selection) that

have been recognized as such by evolution experts

(Lewontin 1978; Pigliucci and Kaplan 2006:14; Patterson

1978; Endler 1992). Core concept scores were tallied

separately for each item, and collectively for all four items,

both pre- and post-course. In addition, the number of dif-

ferent core concepts used among all four items (hereafter:

Core Concept Diversity) was scored for each participant.

Measures of Score Correspondence

Inter-rater agreement between human raters is a common

metric for evaluating score comparability (Chung and

Baker 2003: 28; Krippendorff 2004: 246–249). This

approach may also be used to test for human–computer

correspondence. Agreement may be quantified using the

percentage of exact or adjacent agreements between SIDE

scores and human expert scores. Percentage agreement

statistics are problematic, however, as they are sensitive to

the number of cases analyzed (Yang et al. 2002). Cohen’s

Kappa, values of which range from 0.0 to 1.0, has conse-

quently been used to quantify levels of agreement between

raters because it compensates for chance inter-rater

agreements (Bejar 1991). Several different inter-rater

agreement benchmarks have been established using the

Kappa statistic: Kappa values between 0.61 and 0.80 were

considered by Landis and Koch (1977) to be ‘‘substantial’’

and those between 0.81 and 1.00 to be ‘‘almost perfect.’’

Krippendorff (1980) likewise followed these benchmarks

in his bestselling guide to content analysis. In line with

these studies, we consider Cohen’s Kappa values between

0.41 and 0.60 to be ‘‘moderate’’, those between 0.61 and

0.80 to be ‘‘substantial’’, and those between 0.81 and 1.00

to be ‘‘almost perfect.’’

Analyses

There are many possible approaches for testing the efficacy

of SIDE scoring models relative to expert human raters.

Different analyses will reveal different facets of the effi-

cacy and generalizability of a scoring model. Since our

goal is to explore the utility of SIDE for automated scoring

of evolutionary responses using many different item sur-

face features (i.e., different taxa, traits, and change polar-

ities), we perform several different evaluations comparing

expert-generated scores and SIDE scores: (1) Same

Prompt, Same Instrument (SPSI) (e.g., SIDE is trained

and evaluated on examples from the Rose item from

the EGALT-P); (2) Same Prompt, Different Instrument

(SPDI) (e.g., SIDE is trained on examples from Elm items

from the EGALT-P, and evaluated on Elm items from the

EGALT-F); (3) Different Prompt, Same Instrument (DPSI)

J Sci Educ Technol (2012) 21:183–196 187

123



(e.g., SIDE is trained on examples for the Elm items and

evaluated on examples for Rose items, with both Elm and

Rose items coming from within the EGALT-P); and (4)

Different Prompt, Different Instrument (DPDI) (e.g., SIDE

is trained on the Prosimian item within the EGALT-P and

evaluated on Rose items within the EGALT-F).

To evaluate the performance of these models, we use a

technique known as cross-validation. For each test condi-

tion, we partition our training sample into a series of sep-

arate subsamples. Then, we build a series of scoring

models, each one using all but one of the subsamples. We

then measure the accuracy of each model on the held-out

subsample, and average the resulting performance values

across all of the models. This simulates the performance

that we might expect to see on new responses in a real-

world scenario. Importantly, we do not change any settings

of the types of features used or the model being applied in

cross validation. Our goal is to explore the utility of SIDE

for automated scoring of many different instruments;

therefore we wish to evaluate its performance without the

need for human fine-tuning of each model.

We performed one additional analysis of likely impor-

tance to others interested in using SIDE for science

assessment: the effects of response length on scoring suc-

cess. Specifically, we examined whether SIDE scoring

models function with comparable success on short and long

responses.

We used PASW 18.0 to perform several calculations: (1)

Kappa agreement statistics between human and SIDE

scores of core concepts of natural selection in the student

responses; (2) Pearson correlation coefficients between

Core Concept Diversity (CCD) measures generated using

human experts and SIDE; and (3) regression calculations

for examining the relationship between Kappa values and

response length. The exact SIDE program settings used in

our analyses are included in the Appendix.

Results

Student Explanations of Evolutionary Change

In order to provide readers with a sense of the evolutionary

explanations that the students in our sample constructed,

we include a series of examples along with human and

computer score results (Table 1). As is evident in Table 1,

students’ explanations included a diverse array of explan-

atory elements, both scientifically accurate and conceptu-

ally naive. For the present study, our scoring of the [ 2000

essays focused on the types of scientifically accurate

Table 1 Examples of students’ written evolutionary explanations to four different prompts and respective human and computer scores

Prompt Student’s explanation of evolutionary changes Human key

concept score

SIDE key

concept score

Familiar animal/trait

gain (Snail/poison)

‘‘A random mutation could have occured causing the snail to

produce some sort of toxin that is poisonous. This chance

mutation then could have increased the animals fitness

making it less suseptable to predation. Since it was not eaten

it was able to reproduce and pass along the ability to produce

poison to its offspring’’

4 4

Unfamiliar animal/trait

gain (Prosimian/torsi)

‘‘The ancestral prosimian species with short tails may have

used the tails in mating rituals. This could mean that the

females picked the males with the longer tails and as each

generation after that the same process would occur. The

choosing of the genetic trait made each generation of the

species have longer and longer tails’’

3 2

Familiar plant/trait

gain (Elm/winged seed)

‘‘A species of elm with winged seeds allows for seed dispersal

thus spreading of potential offspring over a vast area. As a

result more offspring are potentially scattered and the winged

are the median of reproduction dispersal. This is very similar

to the coconut floating in water to a distant island then

implanting in the soil and maturing into a coconut/palm tree’’

1 1

Unfamiliar plant/trait

gain (Labiatae/pulegone)

‘‘I do not know what pulegone is. However I’m sure that

evolutionary horticulturist would. They would probably

explain that pulegone give this particular species of labiatae

an competitive edge. Other species of labiatae may not live in

the proper setting or interact with the organisms that surround

this species of labiatae. Hence this particular species of

labiatae is the only one to employ pulegone’’

2 2

See methods for complete items and scoring methods
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elements in student responses—that is, the so-called ‘‘Key

Concepts’’ (KC) of natural selection (ongoing research is

exploring misconception detection).

Testing the Effects of Instruments and Items on SIDE

Performance

Our presentation of results begins at the coarsest grain size

of comparison between human expert scores and SIDE

scores—that is, with between-instrument comparisons.

Training SIDE using 980 human-scored responses to all

four EGALT-P items for the variables KC1, KC2, and KC3

generated scoring models with Kappas of 0.87, 0.81, and

0.88, respectively (Fig. 1). Applying these scoring models

to all EGALT-F instrument responses produced Kappas of

0.83 for KC1, 0.68 for KC2, and 0.64 for KC3. In all cases,

percentage agreement values exceeded 80%. Reversing the

analysis—performing SIDE training on 1280 EGALT-F

responses and applying the scoring models for each KC to

EGALT-P—produced similar findings (Fig. 1). In both

analyses, KC1 agreement values were greater than those

for KC2 and KC3 for both the training and the testing

phases of the analysis. Overall, the training models were

‘‘near perfect’’ in most instances (Kappa scores above

0.80), but agreement degraded when the scoring models

built with one instrument were applied to the another

instrument.

In contrast to our previous analyses, our next set of tests

explored correspondence patterns between SIDE scoring

models built using all four items within the same instru-

ment; that is, the 1,280 responses for EGALT-F were split

in two, model building was performed on 50% of the

sample (n = 640), and model testing was performed on the

other 50% of the sample (n = 640). This procedure was

performed eight independent times in order to compensate

for possible sampling effects. For the model-building phase

of the analysis, mean Kappa values for the three KCs from

EGALT-F were consistently greater than those for EG-

ALT-P, although for both instruments all values were

above 0.75 (Fig. 2). Additionally, percentage agreement

values always exceeded 90% for all KCs for both instru-

ments. When these scoring models were applied to the

other half of the responses, they produced comparable

magnitudes of agreement (Fig. 2). Mean Kappa values for

EGALT-F for KC1, KC2, and KC3 were 0.93, 0.75, and

0.83, respectively. Mean Kappa values for EGALT-P for

KC1, KC2, and KC3 were very similar (0.80, 0.85, and

0.81, respectively). For all KCs, the percentage agreement

values exceeded 90% (Fig. 2). Overall, five out of the six

tests of the SIDE models exceeded ‘‘near perfect’’ Kappa

scores (above 0.80, cf. Landis and Koch 1977).

In addition to analyses of each KC, we measured what

we consider to be the most useful and valid indicator of

natural selection understanding: Key Concept Diversity

(KCD; Nehm and Reilly 2007; Nehm and Schonfeld 2008).

Fig. 1 SIDE performance at the ‘whole instrument’ scale. Here,

training on the EGALT P is applied and tested on the EGALT F, and

vice versa. Kappa values and agreement percentages are listed for

each of the three Key Concepts (KC) of natural selection (see text for

descriptions). Note that dashed lines represent model building, and

solid lines represent model testing

Fig. 2 Scoring model training/

building and scoring model

testing results for the three core

concepts of natural selection for

the EGALT F and EGALT P

instruments. All four items

within each instrument were

used in separate analyses. A

random selection of one half of

the responses within each

instrument was selected eight

(independent) times to train/

build the scoring models, and

these models were subsequently

tested on the other half of the

responses. Displayed are mean

values and standard errors,

using all four items from each

instrument
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KCD is a broad measure of evolutionary knowledge: it

captures student use of accurate scientific elements across

an array of problems differing in surface features (Nehm

and Ha 2011). For this reason, the efficacy of SIDE in

evaluating KCD is of particular importance. Diversity

refers to the number of necessary and sufficient explana-

tory concepts that are employed in an evolutionary expla-

nation. Notably, KC1, KC2, and KC3 must be used

together to produce a complete scientific answer. Using a

training/testing sample split as described above, we com-

pared human-expert and SIDE KCD scores using Pearson

correlation coefficients. Mean KCD correlation coefficients

for EGALT-F ranged from 0.87 to 0.92 (mean = 0.90) and

those for EGALT-P ranged from 0.83 to 0.89 (mean =

0.86). All correlations were significant at p \ 0.01. Thus,

for what we consider to be the most important measure

of evolutionary explanations, SIDE performance was

outstanding.

Our next analyses examined the performance of SIDE at

a finer grain size: we tested how SIDE scoring models that

were built on sets of items within an instrument (e.g.,

elm ? rose ? penguin) functioned when applied to dif-

ferent items within the same instrument (e.g., Snail). In the

case of EGALT-P, 735 responses were used to build

scoring models (Fig. 3). These models were subsequently

tested on a different single item from the same instrument

(n = 245 in all analyses). In the case of EGALT-F, 960

responses were used to build scoring models based on the

item sets. These models were subsequently tested on a

different, single item from the EGALT-F (n = 320 in all

cases). Scoring models built using item sets from EGALT-

P displayed Kappa values ranging from 0.81 to 0.84 for

KC1, 0.83–0.88 for KC2, and 0.81–0.88 for KC3 (Fig. 3,

left column). Scoring models built using item sets from

EGALT-F displayed Kappa values ranging from 0.93 to

0.94 for KC1, 0.77–0.81 for KC2, and 0.84–0.88 for KC3

(Fig. 3, right column). Tests of the scoring models (sepa-

rately applied to the snail, elm, rose, and penguin items of

EGALT-P) produced Kappa values ranging from 0.80 to

0.87 for KC1, 0.85–0.91 for KC2, and 0.68–0.77 for KC3.

Tests of the scoring models (separately applied to the snail,

elm, prosimian, and labiatae items of EGALT-F) produced

Kappa values ranging from 0.88 to 0.94 for KC1,

0.62–0.86 for KC2, and 0.76–0.88 for KC3. In general, the

lowest levels of correspondence between human and SIDE

scores occurred in KC3 for the EGALT-P, but KC2 for

EGALT-F. Overall, model building and model testing were

influenced to some extent by items and instruments

(Fig. 3). In the majority of model building and model

testing analyses, however, ‘‘near perfect’’ agreement levels

were reached.

Our final analyses focused on using individual items to

build scoring models and to perform model tests on dif-

ferent items (both within and between instruments). For

items in the EGALT-P instrument, 245 responses were

used and for EGALT-F 320 responses were used. The

results of this analysis are quite complex, given the number

of permutations possible with two instruments, eight items,

and three concepts (Fig. 4). In order to capture a broad

picture of the findings, we first draw the reader’s attention

to the cell shadings illustrated in Fig. 4. The darkness of

the shadings reflects the level of score agreement, with the

darkest cells representative of the highest Kappa values

(which are also shown numerically within each cell). We

Fig. 3 Within instrument, different prompt comparisons. a EGALT P elm ? rose ? penguin (n = 735) trained and tested on snail (n = 245).

b egalt F. Elm ? prosimian ? labiatae (n = 960) trained and tested on snail, etc. (n = 320)
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note several patterns of interest in Fig. 4. First, dark

diagonal ‘‘steps’’ may be observed in all three of the key

concept panels (upper, middle, and lower). This pattern is a

product of cases in which model testing was performed on

the same item type from the same instrument (i.e., training

on the EGALT-P snail item and testing on the EGALT-P

snail item; recall that the same responses were not used

because of sample splitting). This result is not surprising,

as training and testing were performed on the most similar

data.

The second pattern of note in Fig. 4 is the decreasing

number of darkly shaded cells as one compares the top,

middle, and bottom panels; KC1 (Variation) has many

darkly shaded cells whereas KC3 (Differential survival)

has few darkly shaded cells. This pattern indicates that

KC3 scoring models are the most sensitive to item surface

feature and instrument changes. In contrast, KC1 scoring

models are the least sensitive to these changes; here, the

vast majority of model tests produced high Kappa agree-

ment levels between SIDE and human scorers.

The third pattern that we note in Fig. 4 is the effect of

changing instruments on scoring model performance.

Examining the upper panel in Fig. 4, it is apparent that

items on the EGALT-F have greater agreement corre-

spondences than items on EGALT-P for KC1. This is

indicated by the darker shading in the lower right hand

corner of the KC1 panel relative to the shading in the lower

left hand corner of the KC1 panel. Instrument effects may

also be noted for KC2 (Heredity). In this case, EGALT-P

items outperform EGALT-F items. In the case of KC3

(differential survival), model performance is less sensitive

to which instrument is used than for the other KCs. How-

ever, it is highly item specific.

Overall, these analyses revealed two patterns: First,

instruments and their constituent item surface features in

some cases significantly influence the performance of SIDE

in scoring evolutionary explanations. Second, training

SIDE using specific items (e.g., ‘‘Rose’’) and applying the

model to the same items produces the highest degree of

correspondence with human expert scores.

Response Length and SIDE Performance

Our final analysis explored whether SIDE scoring models

functioned with comparable efficacy when applied to

responses varying in length. SIDE scoring models were

built for KC1, KC2, and KC3 using all 1,280 responses to

EGALT-F. Similarly, scoring models were built for the

three KCs using all 980 responses to EGALT-P. These

scoring models were subsequently tested on subsamples

(from the corresponding instrument) that differed in length.

Specifically, the responses to each instrument were

Fig. 4 Comparisons among

instruments, items, and key

concepts (variation, heredity,

differential survival). EGALT P

(all items, n = 245); EGALT F

(n = 320). Cell darkness

reflects Kappa scores, with

darker cells having higher

Kappas
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partitioned into five groups, ranging from the shortest 20%

to the longest 20% in the sample (Fig. 5). Scoring models

built with the EGALT-F were tested on various EGALT-F

subsamples, as were those for the EGALT-P. As Fig. 5

illustrates, scoring model performance (measured using

Kappa and percent agreement) did not differ substantially

among the five subsamples: in all cases, Kappa values

exceeded 0.80 and percentage agreement values exceeded

95%. While scoring models built using the entire sample

performed well in all length conditions, the scoring models

were least effective in the shortest response subsample

(Fig. 5).

Discussion

We begin our discussion of SIDE scoring efficacy at the

broadest scale of analysis: whole-instrument comparisons.

At this scale, SIDE was trained using responses to the

EGALT-P instrument, and the resulting scoring model was

tested using the responses to EGALT-F (and vice versa)

(Fig. 1). Despite outstanding model-building Kappa scores

(Fig. 1), SIDE performance tests did not meet the Kappa

benchmark (scores above 0.80) in four of the six compar-

isons with human expert scores. Thus, scoring models built

at the whole-instrument level did not perform well using

our response corpus. This is not surprising, as the prompts

and their surface features across instruments are quite

diverse.

Given the moderate performance of scoring models built

at the whole-instrument level, our second set of analyses

examined SIDE scoring model efficacy within each

instrument (EGALT-P or F) for particular Key Concepts

(KC). Scoring performance within instruments was supe-

rior to the whole-instrument comparisons, with 83% (5/6)

of KC tests meeting or exceeding the Kappa performance

benchmark of above 0.80 (Fig. 2). Interestingly, model

performance across KCs was not consistent between

instruments; the KC1 scoring model demonstrated the best

performance in the EGALT-F but the worst performance in

EGALT-P. Nevertheless, within-instrument scoring models

performed very well in most cases.

Our third set of analyses focused on SIDE scoring of

individual items (e.g., rose) using models built from

combinations of different items (e.g., snail ? elm ? pen-

guin). In these analyses we found that 66% (16/24) of

scoring model tests met our Kappa benchmark (Fig. 3).

While KC1 met our benchmark in all comparisons at this

scale, KC2 and KC3 performance was variable. Thus, in

many cases, SIDE scoring models built from item combi-

nations failed to match our performance target.

Our final analyses focused on scoring model perfor-

mance at the scale of individual items. SIDE performance

was outstanding when training models were built and tes-

ted on the same items, with 100% of tests (24/24)

exceeding our Kappa benchmark of above 0.80 (Fig. 4, see

the diagonal cells in the upper, middle, and lower panels).

It is unlikely that additional human scoring of these items

will be necessary given their robust scoring models. Our

analysis also revealed that KC1 training models were most

effective across items, but this was not the case for KC2 or

KC3. Overall, it appears that in the case of student-gen-

erated evolutionary explanations, SIDE is most effective

when trained on the same items that it will subsequently be

asked to score.

We have established robust scoring models for six dif-

ferent evolution items. Given that SIDE can score large

response sets ([1,000) in less than 5 min, larger-scale

testing of the generalizability of these scoring models

should begin. Specifically, samples from different

Fig. 5 Scoring models built

using the entire sample of each

instrument were applied to

subsamples sorted by response

length. While the scoring

models were least effective in

the shortest response subsample,

all tests exceeded Kappas

greater than 0.80
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geographic regions, more racially diverse samples, and

varying levels of content preparation should be examined.

Use of these items and their associated SIDE scoring

models should save considerable time and money. Fol-

lowing the scoring time and cost estimates of Nehm and

Haertig (2011), employing and training a human rater to

score 3,000 responses is estimated to take 100 h and to cost

$2,000.00. Given that many introductory biology pro-

grams, including our own, educate thousands of students

per year, the financial benefits of using SIDE to score open

response evolution assessments is clear. But perhaps the

greatest positive effect of using SIDE and related com-

puterized assessment tools is that science assessments can

begin to measure more complex scientific reasoning pro-

cesses, such as the construction of evolutionary explana-

tions, and shift away from measuring students’ abilities to

select isolated fragments of knowledge in multiple choice

tests (NRC 2001, 2007; Alberts 2010; Nehm and Haertig

2011). Thus, SIDE may be used to leverage reform in the

teaching and learning of biology.

Improving SIDE Scoring Models with Human-Built

Feature Spaces

It is possible to augment the scoring models automatically

built using SIDE, and thereby enhance scoring perfor-

mance. The machine-learning methods in SIDE make

inferences based upon the training examples that are pro-

vided, without any prior ‘‘knowledge’’ about the key words

or phrases that might be helpful in distinguishing response

types. Human experts may be able to detect rare but related

text elements, and group them together into sets of key

terms, so that the scoring model can recognize a pattern

that would otherwise be obscured or missed. A second

approach is to have domain experts identify—prior to

computer analysis—those sections of the text that are most

important for detecting the presence or absence of a con-

cept. Prior work in other content areas has demonstrated

that this interactive approach can improve scoring model

performance (Arora and Nyberg 2009).

A drawback of human expert augmentation is that it

requires expert time and resources to build each new

machine-learning model. While all of the scoring models

that we presented were produced automatically (with no

human ‘tuning’ of feature spaces or models), an interactive

approach would require expert analysis of many training

examples prior to beginning machine learning. Preliminary

augmentation attempts using SIDE demonstrated that while

kappas can be increased a small amount through brief

episodes of expert ‘tuning’ (often enough to nudge model

performance from under to over our ‘‘near perfect’’

agreement benchmark level above 0.80, cf. Landis and

Koch 1977). Dramatic increases in kappas (e.g., ?0.2)

were less easily obtained, however. Nevertheless, addi-

tional work is clearly needed to empirically investigate

approaches to optimization of machine learning using

human expert augmentation.

Advantages and Disadvantages of SIDE Relative

to SPSS Text Analysis

In the only other study of computerized scoring of stu-

dents’ written evolutionary explanations, Nehm and

Haertig (2011) explored the utility of SPSS Text Analysis

for Surveys 3.0 (SPSSTA). For science education

researchers interested in using text analysis to score stu-

dents’ written assessment responses, a general discussion

of the advantages and disadvantages of the SPSSTA and

SIDE programs may be helpful. Nehm and Haertig (2011)

found that their text extraction libraries and rules built in

SPSSTA were able to detect Key Concepts (KC) of natural

selection in students’ responses at comparable magnitudes

to those from SIDE (i.e., Kappa scores above 0.80 in a

majority of cases). Even though these two studies used

different samples of student responses generated from

different instruments (EGALT vs. ORI), both software

packages functioned quite well at detecting KCs of natural

selection. Both studies demonstrate the utility of using text

analysis programs for scoring written explanations in

biology.

There are costs and benefits of each program, however,

that researchers will want to consider in choosing between

these two programs (Table 1). Overall, for researchers who

have clear and robust scoring rubrics and scored responses,

SIDE appears to be much more cost and time effective.

SPSSTA, on the other hand, appears to be the more

appropriate tool for researchers who have not built rubrics

for scoring responses, or who have vague models of the

text features that define excellent or poor responses, for

example. These broad generalizations should be interpreted

with caution, however, as our experiences in the complex

domain of evolutionary biology may not apply to other

content areas (Table 2).

Implications for Assessments Beyond Evolution

The outstanding performance of SIDE in scoring evolu-

tionary explanations suggests that it may have broad

applicability in other domains, contexts, and educational

levels, both within and outside of the biological sciences.

In particular, assessment tasks in which clear criteria (i.e.,

rubrics) have been established, and corpora of scored

responses are available, would be ideal candidates for

testing the efficacy of SIDE relative to human scoring.

Given that many assessments include rubrics that have

been used on actual responses, and that SIDE is relatively
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easy to use (and free), we see machine learning as a

potentially transformative tool in advancing the assessment

of more authentic, ill-structured problem solving tasks in

many contexts (cf. NRC 2001).

In many respects, SIDE is unique in that it may solve the

problem of developing innovative assessments at an

‘‘intermediate’’ scale and budget. In contrast, large com-

panies, such as Educational Testing Service, will continue

to develop large-scale, big budget, norm-referenced tests,

and small schools will continue to hand-score performance

assessments. But those stakeholders at an intermediate

scale—public universities, academic departments, or

school districts—may not have the budgets or expertise to

build national-level, large-scale innovative assessments.

SIDE may effectively fill this gap, as has been the case at

our university; it may be easily adapted to ‘home-grown’

assessments in which rubrics and scored responses are

available. We are hopeful that others will take advantage of

this innovative assessment tool and explore its efficacy in

other domains.

Conclusions

Many high-stakes, multiple-choice assessments are

severely constrained in their ability to measure thinking

and communication skills essential to success in real world

problem-solving environments. Consequently, new

assessment types and methods are needed that are capable

of measuring more complex performances (Wagner 2008;

Gitomer and Duschl 2007). Our study examined the effi-

cacy of a new software tool (SIDE) in automatically

scoring students’ written explanations of evolutionary

change. SIDE performance was most effective when

scoring models were built and tested at the individual item

level. Performance degraded when suites of items or entire

instruments were used to build scoring models. SIDE

performance was outstanding for what we consider to be

the most important measure of evolutionary explanations:

Key Concept Diversity (KCD). KCD measures the number

of necessary and sufficient explanatory concepts that are

employed in a written evolutionary explanation. When

using SIDE for confirmatory text detection, as we did, it

offers many advantages compared to commercial text

analysis programs such as SPSS Text Analysis for Surveys.

In the case of evolutionary explanations, SIDE scoring

performance was found to be equivalent or superior to that

of SPSSTA and required less time and financial invest-

ment. Technological tools such as SIDE have great

potential in shifting the focus of assessments to more

authentic, real world problem-solving tasks.
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Appendix

The SIDE program and user’s guide may be downloaded

at: http://www.cs.cmu.edu/~cpRosé/SIDE.html. Specific

SIDE settings for performing the analyses in this study

include: The machine-learning algorithm was selected as

‘‘weka-classifiers-functions-SMO’’; options included: (1)

‘‘unigrams’’; (2) ‘‘treat above features as binary’’; (3) ‘‘line

length’’; (4) ‘‘remove stopwords’’; and (5) ‘‘stemming’’

(details of these features may be found in Mayfield and

Rosé 2010, p. 6). We also used the feature extractor plugin

option ‘‘plugin.sample.fce.TagHelperExtractor’’; This

default option creates a feature table based upon the NLP

extractions mentioned above. We also selected the

‘‘Remove rare features’’ option and set the value of 5, and,

as noted above, chose the machine-learning algorithm

‘‘weka-classifiers-functions-SMO.’’ We selected Cross-

validation and set the value at 10. For the Default seg-

menter option, we selected ‘‘plugin.sample.segmenter.

DocumentSegmenter’’ (Mayfield and Rosé 2010).

Table 2 Attributes of SIDE in comparison to SPSS text analysis for surveys 3.0

Features SPSS text analysis SIDE

Primary purpose Exploration of text features and confirmation of text features Confirmation of text features

Initial product cost [$1,000.00 (personal license) Free

Training time Similar effort required

Term library and rule creation [100 h Not needed

Human scoring time Similar effort required

Scoring rubric creation Similar effort required

Human/computer agreement statistics (e.g., Kappa) Not provided Provided

Key concept detection performance Similar: Majority of cases ‘‘near perfect’’ (Kappas [ 0.80)
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Mayfield E, Rosé C (2010) An interactive tool for supporting error

analysis for text mining. In: Paper in proceedings of the

demonstration session at the international conference of the

North American Association for Computational Linguistics

(NAACL), Los Angeles, USA

McLaren B, Scheuer O, de Laat M, Hever R, de Groot R, Rosé C
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